

university of rajasthan

Chemistry practical Exam

B.Sc. Semester-2 nd (chemistry )Practical-(a)

duration \_4hrs

Max Marks-10\*40. Min marks 4\*+16

Ex:1 separation and identification of six radical (3 cation and 3 anion) in the given inorganic mixture. (10)

Acidic radical:  $\text{NO}_2^-$ ,  $\text{Cl}^-$ ,  $\text{SO}_4^{2-}$

Basic radical:  $\text{NH}_4^+$ ,  $\text{cd}^{+2}$ ,  $\text{mg}^{+2}$

Ex2 Synthesis of 2,4-dinitrophenylhyrazones of any aldehyde /ketone.

Ex:3. To Study the effect of Acid Strength on the Hydrolysis of an ester. (10)

Ex: 4 Viva Voice (5)

Ex:5 Record (5)

university of rajasthan

Chemistry practical Exam

B.Sc. Semester-2nd(chemistry )Practical-(B)

duration \_4hrs

Max Marks-10\*40. Min marks 4\*+16

Ex: 1 separation and identification of six radical (3 cation and 3 anion) in the given inorganic mixture. (10)

Acidic radical:  $\text{CH}_3\text{COO}^-$ ,  $\text{Br}^-$ ,  $\text{I}^-$

Basic radical:  $\text{NH}_4^+$ ,  $\text{Sr}^{+2}$ ,  $\text{Cu}^{+2}$

Ex2 Synthesis of 3,5- dinitro benzoic acid using benzoic acid and nitrating reagent

Ex.3. To Determine the specific Reaction Rate of the Hydrolysis of methyl Acetate/ethyl acetate Catalyzed by Hydrogen ion's at room temperatur (10)

Ex4viva-voice. (5)

Ex5 Record. (5)

university of rajasthan

Chemistry practical Exam

B.Sc. Semester-2nd (chemistry )Practical-(C)

duration \_4hrs

Max Marks-10\*40. Min marks 4\*+16

Ex 1 separation and identification of six radical (3 cation and 3 anion) in the given inorganic mixture. (10)

Acidic radical:  $\text{CH}_3\text{COO}^-$ ,  $\text{SO}_3^-$ ,  $\text{Cl}^-$

Basic radical:  $\text{NH}_4^+$ ,  $\text{Cu}^{+2}$ ,  $\text{Al}^{+3}$

Ex2. Synthesis of semi carbazones of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone, benzaldehyde.

Or

Synthesis of Coumarin through salicylaldehyde.

Ex3 To Compare the Strength of HCl and  $\text{H}_2\text{SO}_4$  by Studying the kinetics oSynthesis of semi carbazones of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone, benzaldehyde.

Ex5 viva-voice. (5)

Ex6. Record. (5)

Object : To identify for three acidic (anions) and basic (cations) Radicals.

Material Required : Test tube holder, burner  
Test tube, filter paper, etc.

Test for acidic Radicals :

| S. No. | Experiment                                                                                                             | Observation                                                    | Inference                                |
|--------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|
| 1.     | Action of dil. $H_2SO_4$<br>mix + dil. $H_2SO_4$ +<br>$\Delta$ $Na_2CO_3 + HCl +$<br>fresh $FeSO_4$                    | light brown gas<br>evolved<br>black colour appear              | $NO_2$ may be.<br>$NO_2^-$ confirm       |
| 2.     | Action of conc.<br>$H_2SO_4$<br>mix + conc. $H_2SO_4$                                                                  | colourless gas evolved<br>with pungent<br>odour.               | $Cl^-$ may be                            |
|        | $Na_2CO_3 + dil. HNO_3 +$<br>$AgNO_3$                                                                                  | white ppt obtained<br>which dissolve in $NH_4OH$               | $Cl^-$ confirm                           |
| 3.     | Mix. + conc. $H_2SO_4$ + $\Delta$<br>Removal of nitrite:<br>$Na_2CO_3$ extract + dil. $H_2SO_4$<br>+ $NH_4Cl + \Delta$ | light brown flame<br>evolved<br>$N_2$ is evolved<br>completely | $NO_3^-$ may be<br>Nitrite is<br>removed |

|                                                                                  |                                        |                         |
|----------------------------------------------------------------------------------|----------------------------------------|-------------------------|
| Ring test -<br>above solution +<br>fresh $\text{FeSO}_4 + \text{H}_2\text{SO}_4$ | Brown ring is formed<br>at two liquids | $\text{NO}_3^-$ confirm |
|----------------------------------------------------------------------------------|----------------------------------------|-------------------------|

## ~~Test for Basic Radicals~~

| S.No. | Experiment                                                                                                                                                                                                                         | Observation                                              | Inference                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| 1.    | Add conc. $\text{H}_2\text{SO}_4 +$<br>boil + $\text{NH}_4\text{Cl}$ soln +<br>$\text{O}_2\text{S} + \text{NH}_4\text{OH} +$<br>dil. $\text{HNO}_3 +$ heat.                                                                        | white gelatinous ppt.<br>is obtained.                    | $\text{Al}^{+3}$ may be                                          |
|       | Residue + dil. HCl<br>then add excess NaOH                                                                                                                                                                                         | white ppt. obtained<br>ppt. is disappear                 | $\text{Al}^{+3}$ confirm                                         |
| 2.    | Filterate of III <sup>rd</sup><br>group + $\text{NH}_4\text{Cl} +$<br>$\text{NH}_4\text{OH}$ .<br><br>$\text{H}_2\text{S}$ gas + Residue +<br>dil. HCl + NaOH +<br>$\text{CH}_3\text{COOH} + \text{K}_4[\text{Fe}(\text{CN})_6]$ . | white ppt. obtained                                      | $\text{Zn}^{+2}$ may be                                          |
| 3.    | Filterate of IV <sup>th</sup><br>group + boil +<br>cool + $\text{NH}_4\text{OH} + (\text{NH}_4)_2\text{CO}_3$                                                                                                                      | $\text{H}_2\text{S}$ is removed<br>white ppt is obtained | $\text{Ba}^{+2}$ , $\text{Sr}^{+2}$ ,<br>$\text{Ca}^{+2}$ may be |

Teacher's Signature.....



|                                                                   |                  |                          |
|-------------------------------------------------------------------|------------------|--------------------------|
| white ppt. + $\text{CH}_3\text{COOH}$                             |                  |                          |
| 1. above sol <sup>n</sup> + $\text{K}_2\text{Cr}_2\text{O}_7$     | No ppt           | $\text{Ba}^{+2}$ absent  |
| 2. above sol <sup>n</sup> + $(\text{NH}_4)_2\text{SO}_4$          | No ppt. obtained | $\text{Sr}^{+2}$ absent  |
| 3. above sol <sup>n</sup> + $(\text{NH}_4)_2\text{C}_2\text{O}_4$ | white. ppt       | $\text{Ca}^{+2}$ confirm |

Result :-

Acidic :-  $\text{NO}_2^{-2}$ ,  $\text{NO}_3^-$ ,  $\text{Cl}^-$

Basic :-  $\text{Al}^{+3}$ ,  $\text{Zn}^{+2}$ ,  $\text{Ca}^{+2}$

are present in given mixture.

*Expt. No. 1  
9/03/2021*

Object :- Identify three acidic (anions) and basic (cations) radicals.

Material Required :- Test tube, burner, holder, filter paper, etc.

~~Test for acid Radicals :~~

| S.No. | Experiment                                                                                                   | Observation                                        | Inference                                     |
|-------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| 1.    | Action of dil. $H_2SO_4$ mix. + dil. $H_2SO_4$ + heat                                                        | $CO_2$ gas evolved colourless gas evolved.         | $CO_3^{2-}$ may be $SO_3^{2-}$ may be         |
|       | Combination test for $CO_3^{2-}$ , $SO_3^{2-}$ + mix. + $K_2Cr_2O_7$ + dil. $H_2SO_4$ then gas pass in water | Orange solution $CO_2$ turns it in milky indicator | $SO_3^{2-}$ is confirm $CO_3^{2-}$ is confirm |
| 2.    | Action of conc. $H_2SO_4$ mix. + conc. $H_2SO_4$ + heat.                                                     | light brown gas evolved                            | $NO_3^-$ may be                               |
|       | Ag. soln of mix. + fresh $FeSO_4$ + conc. $H_2SO_4$                                                          | Brown ring is formed at junction of two liquid.    | $NO_3^-$ confirm.                             |

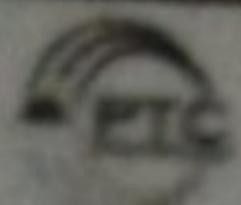


Teacher's Signature.....

## Test for Basic Radicals :

| Experiment                                                                                                                   | Observation                           | Inference                         |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|
| 1. Wet Test :-<br>mix. + NaOH + $\Delta$<br><del>On taking a glass rod wetted with conc. HCl to the mouth of test tube</del> | ammonia gas<br>white fumes are formed | $\text{NH}_4^+$ may be confirmed  |
| 2. dil. $\text{HNO}_3$ + $\Delta$ + solid<br>$\text{NH}_4\text{Cl}$ + $\Delta$ + $\text{NH}_4\text{OH}$                      | Green ppt is obtained                 | $\text{Co}^{+3}$ may be confirmed |
| Residue + $\text{Br}_2$ + water<br>+ NaOH + $\Delta$ + $\text{CH}_3\text{COOH}$<br>+ lead acetate + NaOH                     | Yellow ppt which dissolve ppt.        | $\text{Co}^{+3}$ confirmed        |
| 3. filtrate of III <sup>rd</sup> group + $\text{NH}_4\text{OH}$ + $\text{NaHPO}_4$                                           | white ppt is obtained.                | $\text{Mg}^{+2}$                  |
| Residue + HCl + NaOH + little yellow + reagent + heat.                                                                       | Pink ppt is obtained                  | $\text{Mg}^{+2}$ confirmed        |




Teacher's Signature.....

Result :- The three acidic & basic radicals.

Acidic :-  $\text{SO}_3^{2-}$ ,  $\text{CO}_3^{2-}$ ,  $\text{NO}_3^-$

Basic :-  $\text{NH}_4^+$ ,  $\text{Ca}^{+2}$ ,  $\text{Mg}^{+2}$   
are present in the given compound.

*Answer  
9/03/2021*



Teacher's Signature.....

Object : Identify three acidic (anions) and three basic (cations) radicals in the given inorganic mixture.

Material Required :- Test tube, holder, burners, filter paper.

Test for acidic Radicals :-

| S.No. | Experiment                                                              | Observation                                   | Inference           |
|-------|-------------------------------------------------------------------------|-----------------------------------------------|---------------------|
| 1.    | Action of dil. $H_2SO_4$ + mix. + dil. $H_2SO_4$ + $K_2Cr_2O_7$ .       | colourless gas with smell of burning sulphur. | $SO_3^{2-}$ may be  |
|       | On keeping wetted filter paper with dil. $H_2SO_4$ and                  | turns filter paper in green                   | $SO_3^{2-}$ confirm |
| 2.    | Action of conc. $H_2SO_4$ mix. + conc. $H_2SO_4$ mix. + Sodium extract. | violet gas evolved                            | $I^-$ may be        |
|       | dil. $HNO_3$ + acidic + $AgNO_3$ + $NH_4OH$                             | yellow ppt. obtained                          | $I^-$ confirm       |
|       |                                                                         |                                               |                     |
|       |                                                                         |                                               |                     |
|       |                                                                         |                                               |                     |



Teacher's Signature.....

|    |                                                                                                                                                                                  |                                                             |                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|
| 3. | mix. + conc. $H_2SO_4$<br>combination test :-<br>mix. + $K_2Cr_2O_7$ +<br>conc. $H_2SO_4 + \Delta \rightarrow$<br>gas pass in $NaOH$<br>$sol^n + CH_3COOH +$<br>$(CH_3COO)_2 Pb$ | Insoluble pungent gas<br>yellow coloured<br>ppt is obtained | $Cl^-$ may be<br>$Cl^-$ confirm |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|

~~Test for Basic Radicals :-~~

| S.No. | <del>Experiment</del>                                                                                                                                                            | Observation                                    | Inference.                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| 1.    | Add dil. $HCl$ +<br>filter + add conc. $in$ dil. $HCl$<br>$HCl + NH_4OH +$<br>Oxalic acid + Pass<br>$H_2S$ gas.                                                                  | ppt is obtained soluble<br>orange ppt obtained | $Sb^{+3}$ , $Sn^{+2}$ may be<br>$Sb^{+3}$ confirm |
| 2.    | Nitrate of $II^{nd}$<br>group + $\Delta$ + conc.<br>$H_2SO_4 + NH_4Cl$<br>+ $NH_4OH$ + Pass<br>$H_2S$ gas.<br>Residue + dil. $HCl$<br>+ $NaOH$ + $CH_3COOH$<br>+ $K_4[Fe(CN)_6]$ | white ppt is obtained<br>white ppt obtained    | $Zn^{+2}$ may be<br>$Zn^{+2}$ confirm             |



Teacher's Signature.....

|                                                                                                |                                       |                                                                                                         |
|------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------|
| 3. filterate of IV group + boil + cool + $\text{NH}_4\text{OH}$ + $(\text{NH}_4)_2\text{CO}_3$ | <del>H<sub>2</sub>S gas removed</del> | <del><math>\text{Ba}^{+2}</math>, <math>\text{Sr}^{+2}</math>, <math>\text{Ca}^{+2}</math> may be</del> |
| white ppt + $\text{CH}_3\text{COOH}$ + divide in 3 parts.                                      | Yellow ppt obtained                   | $\text{Ba}^{+2}$ confirm                                                                                |

Result :- The three acidic radicals  $\text{SO}_3^{-2}$ ,  $\text{I}^-$ ,  $\text{Cl}^-$  & basic radicals  $\text{Sb}^{+3}$ ,  $\text{Zn}^{+2}$ ,  $\text{Ba}^{+2}$  are present in the given inorganic mixture.



Teacher's Signature.....

Object :- Identify acidic (anions) & basic (cations) radicals in given organic mix.

Material Required :- Test tube, holder, burner, filter paper, etc.

Test for acidic Radicals :-

| S.No. | Experiment                                                                          | Observation                        | Inference                                  |
|-------|-------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|
| 1.    | Action of dil. $H_2SO_4$ mix. + dil. $H_2SO_4$ .                                    | Vinegar like odour                 | $CH_3COO^-$ may be                         |
|       | <del>Sodium carbonate ex. + <math>H_2SO_4</math> + diphenyl ammonia solution.</del> | <del>deep blue colour appear</del> | <del><math>CH_3COO^-</math> confirm.</del> |
|       | Action of conc. $H_2SO_4$ mix. + conc. $H_2SO_4$                                    | colourless gas                     | $C_2O_4^{2-}$ may be                       |
| -     | Sodium carbonate extract + dil. $CH_3COOH$                                          | white ppt obtained                 | $C_2O_4^{2-}$ confirm                      |
|       | Test for basic Radicals                                                             |                                    |                                            |
| 1.    | Add $HNO_3 + \Delta +$ dil. $H_2SO_4 + C_2H_5OH + NH_4OH$                           | No ppt. is obtained                | $Cu^{+2}$ may be                           |
|       | $CH_3COOH + k_4[Fe(CN)_6]$                                                          | Chocolatey coloured ppt            | $Cu^{+2}$ confirm                          |

|               |                                                                                                                                                             |                                                                                                                       |                                                                                                        |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 2.            | Add dil. HCl<br>Residue + dil. $\text{HNO}_3$<br>$\text{PbO}_2$ + cool                                                                                      | Soluble<br>violet colour solution appear                                                                              | $\text{Mn}^{+2}$ , $\text{Zn}^{+2}$ may be.<br>$\text{Mn}^{+2}$ confirm.                               |
| 3.            | Filterate of IV group<br>$\text{H}_2\text{S}$ gas is removed<br>$\text{+ } \Delta$ + cool + $\text{NH}_4\text{OH}$<br>$\text{+ } (\text{NH}_4)_2\text{O}_3$ | <del><math>\text{Ba}^+</math>, <math>\text{Sr}^+</math>, <math>\text{Ca}^{+2}</math><br/>white ppt. is obtained</del> | <del><math>\text{Ba}^+</math>, <math>\text{Sr}^+</math>, <math>\text{Ca}^{+2}</math><br/>may be.</del> |
| $\rightarrow$ | Residue + $\text{CH}_3\text{COOH}$<br>above sol <sup>n</sup> + $\text{K}_2\text{CrO}_4$                                                                     | No ppt obtain                                                                                                         | $\text{Ba}^{+2}$ absent.                                                                               |
| $\rightarrow$ | above sol <sup>n</sup> $(\text{NH}_4)_2\text{SO}_4$                                                                                                         | No ppt obtain                                                                                                         | $\text{Ba}^{+2}$ absent, $\text{Sr}^{+2}$ confirm.                                                     |

Result :- Acidic radicals  $\text{CH}_3\text{COO}^-$ ,  $\text{C}_2\text{O}_4^{2-}$  and Basic radicals -  $\text{Cu}^{+2}$ ,  $\text{Mn}^{+2}$ ,  $\text{Sr}^{+2}$  are present in the given inorganic mixture.



Teacher's Signature.....

Object : Identification of functional group in given organic compound and also observe element test.

Primary test :-

State - solid

Colour - light Brown

Odour - Phenolic

~~Solubility - Water soluble~~

| S.No. | Experiment                                                                                        | Observation           | Inference         |
|-------|---------------------------------------------------------------------------------------------------|-----------------------|-------------------|
| 1.    | Flame test: Take a carbonic comp. on spatula & burn it with help of Burner.                       | It gives black fumes. | Aromatic compound |
| 2.    | Litmus Test: Take a blue litmus paper. Turn blue litmus to red Paper into carbonic compound soln. | paper turns blue      | Acidic in nature  |
| 3.    | Nitrogen Test: Carbonic compound + fresh soln of $\text{FeSO}_4$ + Conc. $\text{H}_2\text{SO}_4$  | green ppt. absent     | N-absent          |



Teacher's Signature.....

## 4. Functional group detection

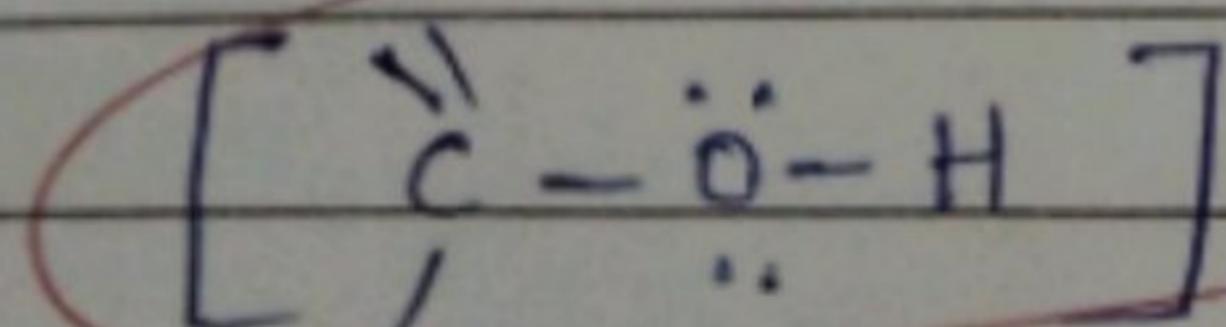
## (i) Sodium metal Test:

Take about 1ml of the given liquid in a dry test tube. add about 1gm of anhydrous Calcium sulphate & shake well to remove water. filter the liquid into another clean test tube & add a small piece of Al metal.

Brisk effervescence is produced.

Evolution of  $H_2$  gas indicate presence of -OH group.

## (ii) Ceric ammonium


nitrate Test:- Take about 1ml of the given liquid in a clean dry test tube & add few drops of ceric ammonium nitrate reagent & shake it well.

Pink or red

Phenol group

colour is developed present.

Result :- In given compound the  $[-C_6H_5OH]$  phenol functional group is present.



*Suruchi*

Teacher's Signature.....



Object :- Identification of functional group in given organic compound & observe element test.

Primary Test :-

state - solid

Colour - Colourless

Odour - Odourless

Solubility - soluble in water

| S.No. | Experiment                                                                                        | Observation                                                                  | Inference           |
|-------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|
| 1.    | Flame Test :- Take a carbonic compound on spatula & burn it with the help of burner.              | Gives white fumes                                                            | Aliphatic compound. |
| 2     | Litmus Test : Take a blue litmus/Red paper into carbon compound solution                          | turns blue litmus Acidic in nature into red presence of $\text{COOH}$ group. |                     |
| 3.    | Nitrogen Test :<br>Carbonic compound + fresh $\text{FeSO}_4$ soln + conc. $\text{H}_2\text{SO}_4$ | blue & green ppt. absent                                                     | $\text{N}$ - absent |

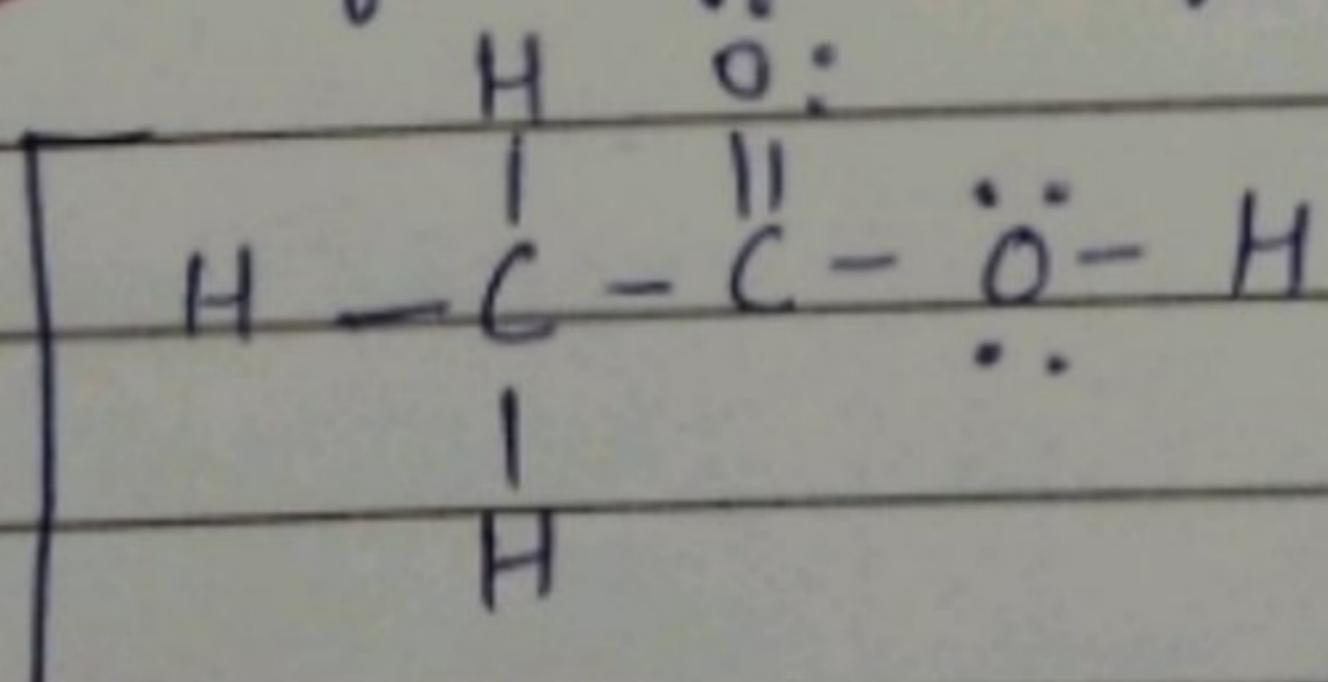


Teacher's Signature.....

4. Functional group detection :-

iii) Sodium hydrogen  
Carbonate test :-

Add a pinch of Sodium bicarbonate in given organic comp. brisk effervescence is observed


Presence of -COOH group.

(iii) Ester Test :-

Add 1 ml of ethyl alcohol gives fruity smell presence of 1-2 drops of conc. -COOH group

1. To SO<sub>4</sub> in given organic compound. heat the mixture on a water bath. & then mix into a beaker containing water.

Result :- In the given compound the -COOH functional group is present.



Teacher's Signature.....

object :- Identification of functional group in given organic compound & also observe element test.

Primary Test :-

state - solid

Colour - light yellow

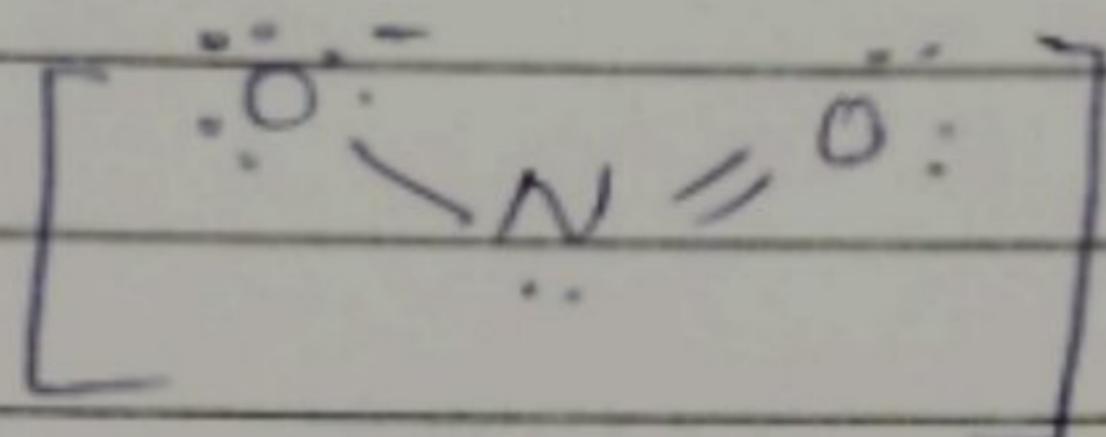
odour - Bitter almond like

Solubility - insoluble in water.

| S.No. | Experiment                                                                                      | Observation                | Inference.          |
|-------|-------------------------------------------------------------------------------------------------|----------------------------|---------------------|
| 1.    | Flame Test :- Take a carbon comp. on spatula & burn it with help of burner.                     | Gives white fumes          | Aliphatic compound. |
| 2.    | Litmus Test :- Take a blue litmus paper & remain unchanged compound solution                    | Neutral.                   |                     |
| 3.    | Nitrogen Test :- Carbon compound + fresh FeSO <sub>4</sub> conc. H <sub>2</sub> SO <sub>4</sub> | blue or green ppt obtained | N - present         |



Teacher's Signature.....


4. Functional group:-

(ii) Carbon compound +  
 $\text{NH}_4\text{Cl}_3 \text{ soln} + \text{C}_2\text{H}_5\text{OH}$   
 +  $\text{Zn} +$  filter paper +  
 Tollen reagent

Gives brown coloured  
 solution

$\text{Al}_2\text{ present}$

Result:- In the given ~~any~~ carbonic compound  
 $\text{NO}_2$  [nitrite] is present.



Teacher's Signature.....

Object :- Identification of functional group in given organic compound & also observe element test.

Primary Test :-

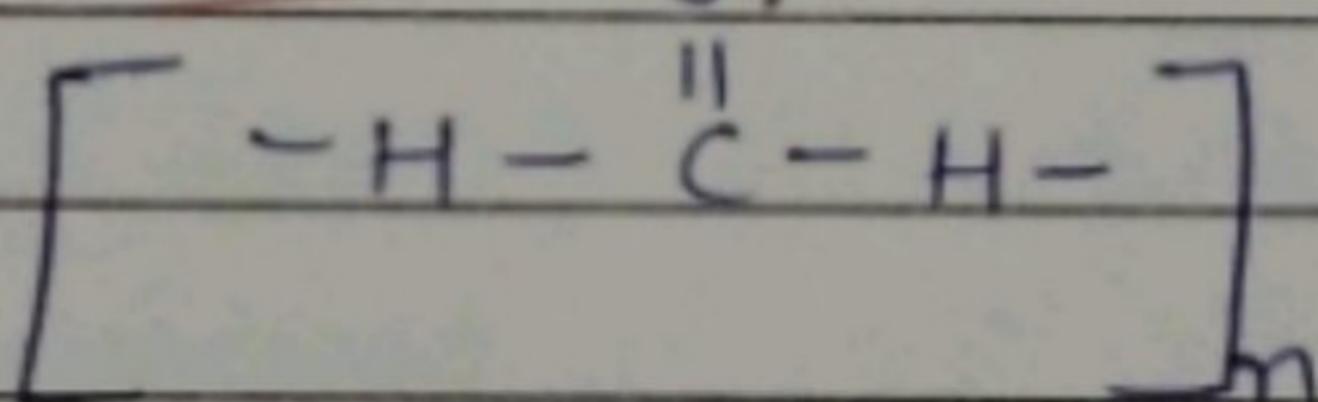
State - solid

Colour - colourless

Odour - like Nail paint

Solubility - ~~water soluble~~

| S.No. | Experiment                                                                                              | Observation                | Inference          |
|-------|---------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
| 1.    | Flame Test: Take a carbon comp. on spatula & burn it help of burner                                     | gives white fumes          | Aliphatic compound |
| 2.    | Litmus Test: Take a litmus paper into a carbon comp. solution                                           | No change in litmus paper. | Neutral            |
| 3.    | Nitrogen Test: Carbon comp. + fresh sol <sup>n</sup> of $\text{FeSO}_4$ + conc. $\text{H}_2\text{SO}_4$ | blue & green ppt. absent   | N- absent          |


## 4. Functional Group:

ii) Molish's Test :- 10% ~~alcoholic solution~~ of  $\alpha$ -naphthol + ~~water~~ + ~~conc. H<sub>2</sub>SO<sub>4</sub>~~ + ~~Malish's reagent~~ + ~~conc. H<sub>2</sub>SO<sub>4</sub>~~ forms a red liquid which turns into a reddish-violet colour.

Carbohydrate

present

Result :- In given carbon compound carbohydrate  $[(H_2O)_n]$  is present

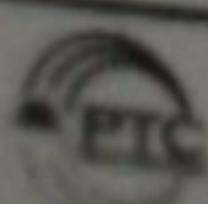


~~Answered  
01/05/2021~~

Object :- Identification of function group in organic compound & also observe element Test.

Primary Test :-

State - Solid


Colour - Light Yellow

Odour - Pungent smell

Solubility - Insoluble

| S.No. | Experiment                                                                               | Observation                | Inference         |
|-------|------------------------------------------------------------------------------------------|----------------------------|-------------------|
| 1.    | Flame Test :- Take a carbon comp. on spatula & burn it help of burner                    | Gives black fumes          | Aromatic Compound |
| 2.    | Litmus Test :- Take no change in litmus paper into paper. Carbon compound solution       | No change in litmus paper. | Neutral           |
| 3.    | Nitrogen Test :- Carbon compound + fresh $\text{FeSO}_4$ + conc. $\text{H}_2\text{SO}_4$ | Blue or green ppt absent   | N - & absent      |

Teacher's Signature.....



4. Functional group :-

(ii) 2,4-Dinitrophenyl hydrazine Test :-  
Carbonyl comp. + 2,4-Di phenyl hydrazine

Yellow-orange ppt presence of  
formed Carbonyl group

(iii) Sodium nitroprusside

Test :- given compound + sodium nitroprusside  
+ distilled water + shake  
it + NaOH solution

Ketonic group  
is present

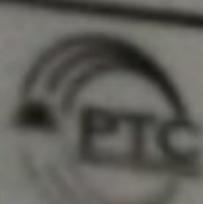
Result :- In given carbon compound the ketone group  $\left[ \begin{smallmatrix} R-C-R \\ || \\ :O: \end{smallmatrix} \right]$  is present



Teacher's Signature.....

object :- Identification of functional group in given organic compound & also known otherwise element test.

Primary Test :-


State - solid

Odour - sweet smell

Colour - white

Solubility - Water soluble.

| S.No. | Experiment                                                                                    | Observation          | Inference           |
|-------|-----------------------------------------------------------------------------------------------|----------------------|---------------------|
| 1.    | Flame Test : Take a organic comp. on spatula & burn it with help of burner                    | gives white fumes    | aliphatic compound  |
| 2.    | Litmus Test :- Take a Litmus paper into the carbon compound solution.                         | No change            | Neutral             |
| 3.    | Nitrogen Test :- Carbon comp. + fresh soln of $\text{FeSO}_4$ + conc. $\text{H}_2\text{SO}_4$ | Litmus do not change | $\text{N}_2$ absent |



Teacher's Signature.....

## 4. Functional group:

(i)  $\alpha, \beta$ -dinitrophenyl  
hydrogen Test :-  
organic comp. +  $\alpha, \beta$ -  
dinitrophenyl  
hydrazine

Yellow-orange ppt  
formed

Carbonyl  
group present.

## (ii) Fehling's Test :-

Fehling soln A + B  
+ given organic  
compound + heat.

Red ppt formed

aldehyde  
present.

Result :- In given organic compound the  
aldehyde group  $[-C=O:]$  present



Teacher's Signature.....

object :- Identification of functional group in given organic comp. & also observe element test.

Primary Test :-

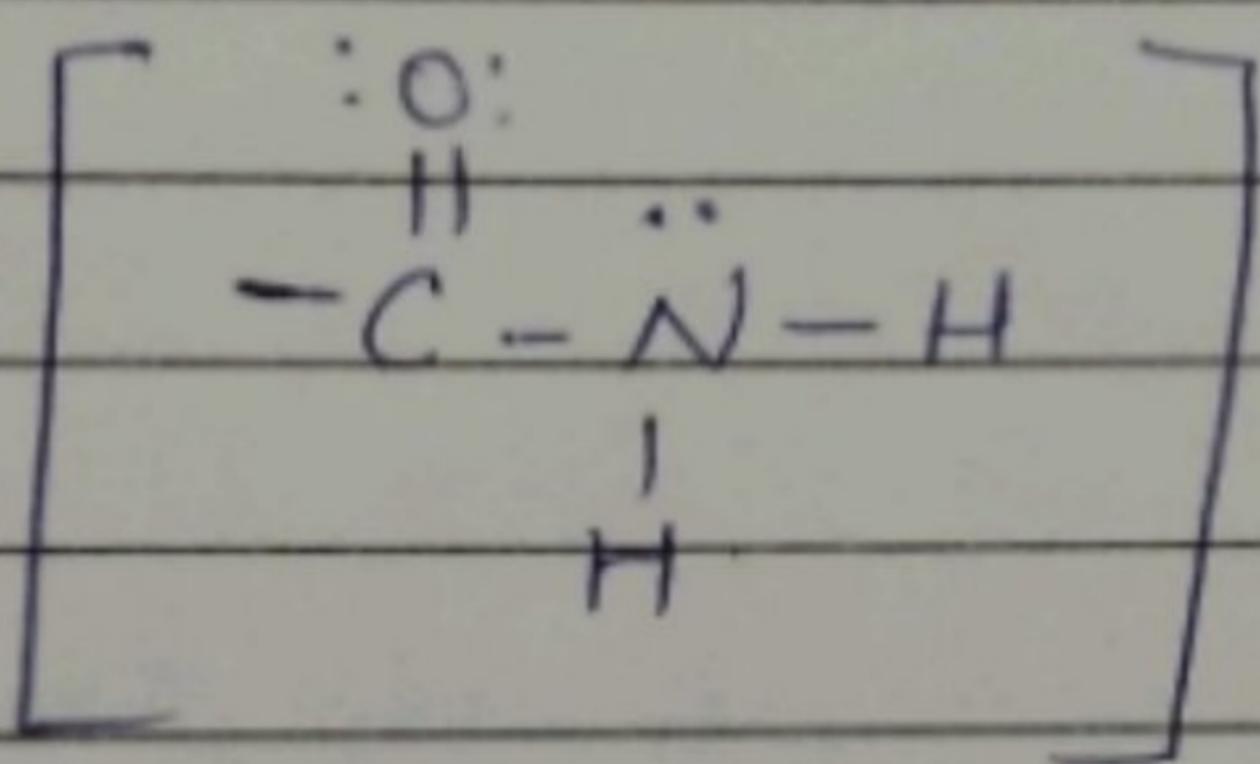
State - solid

Colour - white

Odour - odourless

Solubility - Insoluble

| S.No. | Experiment                                                                                      | Observation            | Inference         |
|-------|-------------------------------------------------------------------------------------------------|------------------------|-------------------|
| 1.    | Flame Test : Take a organic comp. & burn it with help of burner                                 | Black fumes            | Aromatic Compound |
| 2.    | Litmus Test : Take a Red litmus paper into carbon comp. soln                                    | turns Red to blue      | Basic             |
| 3.    | Nitrogen Test : Organic compound fresh FeSO <sub>4</sub> + conc. H <sub>2</sub> SO <sub>4</sub> | Gives blue colour ppt. | Nitrogen present  |


Teacher's Signature.....

## 4. Functional Group test

(i) Organic Compound +  $\text{NaOH}$  ~~smell like, ammo~~ -  $\text{CONH}_2$  may  
~~soln + heat~~ ~~min~~ be

(ii) Organic comp. + dil.  $\text{HCl}$  +  $\text{NaNO}_2$   $\text{N}_2$  gas liberate -  $\text{CONH}_2$  is present

Result :- In given organic compound -  $[\text{CONH}_2]$   
 Amido group is present.



~~General~~  
 ~~$\text{O} \text{---} \text{C} \text{---} \text{N} \text{---} \text{H}$~~   
 ~~$\text{O} \text{---} \text{C} \text{---} \text{N} \text{---} \text{H}$~~   
 ~~$\text{O} \text{---} \text{C} \text{---} \text{N} \text{---} \text{H}$~~

Object :- Identification of functional group in the given compound & also observe element test.

Primary Test :-

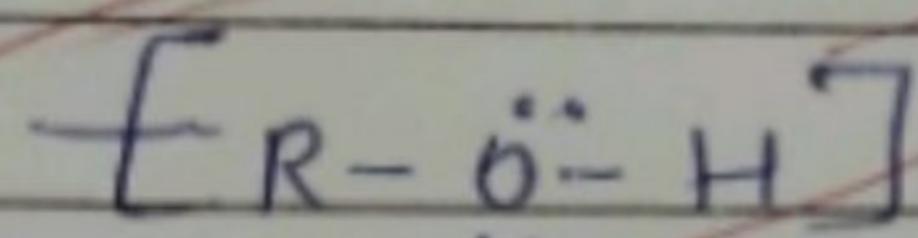
state :- Solid

Colour :- colourless

Odour :- spirit like

Solubility :- soluble

| S.No. | Experiment                                                                                   | Observation               | Inference             |
|-------|----------------------------------------------------------------------------------------------|---------------------------|-----------------------|
| 1.    | Flame Test : Take a organic compound on spatula & burn it help of burner                     | Gives white fumes         | Aliphatic compound    |
| 2.    | Litmus Test : Take a litmus paper into the carbon comp. solution.                            | No change in litmus paper | Neutral               |
| 3.    | Nitrogen Test :-<br>Organic compound + fresh $\text{FeSO}_4$ + conc. $\text{H}_2\text{SO}_4$ | No ppt is formed          | $\text{N}_2^-$ absent |


Teacher's Signature.....



4. Functional group:

|                                                               |                                       |                   |
|---------------------------------------------------------------|---------------------------------------|-------------------|
| (i) Organic comp + Na                                         | <del>H<sub>2</sub> gas liberate</del> | -OH group may be  |
| (ii) Organic comp. + ferric Ammonium Nitrate Sol <sup>n</sup> | Gives Red coloured solution           | -OH group confirm |

Result :- In given organic compound -OH (Alcholic) group is present.



Teacher's Signature.....

object :- Identification of functional group in given organic comp. & also observe element test.

Primary Test :-

state - solid

Colour - Red Brown

Odour - Rotten fish like

Solubility - Insoluble

| S.No. | Experiment                                                                                     | Observation        | Inference            |
|-------|------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 1.    | Flame Test: Take a organic compound and burn with help of burner.                              | gives black fumes  | Aromatic compound    |
| 2.    | Litmus Test :- Take a Litmus paper into Carbon compound solution.                              | turns Red to blue  | Basic                |
| 3.    | Nitrogen Test :- Organic comp. + fresh soln of $\text{FeSO}_4$ + Conc. $\text{H}_2\text{SO}_4$ | Blue coloured ppt. | $\text{N}^-$ present |

Teacher's Signature.....

## 4. Function group test

(i) Carbonyl, amine 180-  
Cyanide test :-  
Carben Comp +  $\text{CHCl}_3$   
+  $\text{CH}_3\text{Cl}$  +  $\text{NaOH} + \Delta$

Acidity / harsh  
small

Amino group  
is present

Result :- In given organic compound  $[-\text{NH}_2]$   
Amino group is present.

$[-\text{NH}_2]$

Object :- Identification of functional group in the given organic comp. & also observe element test.

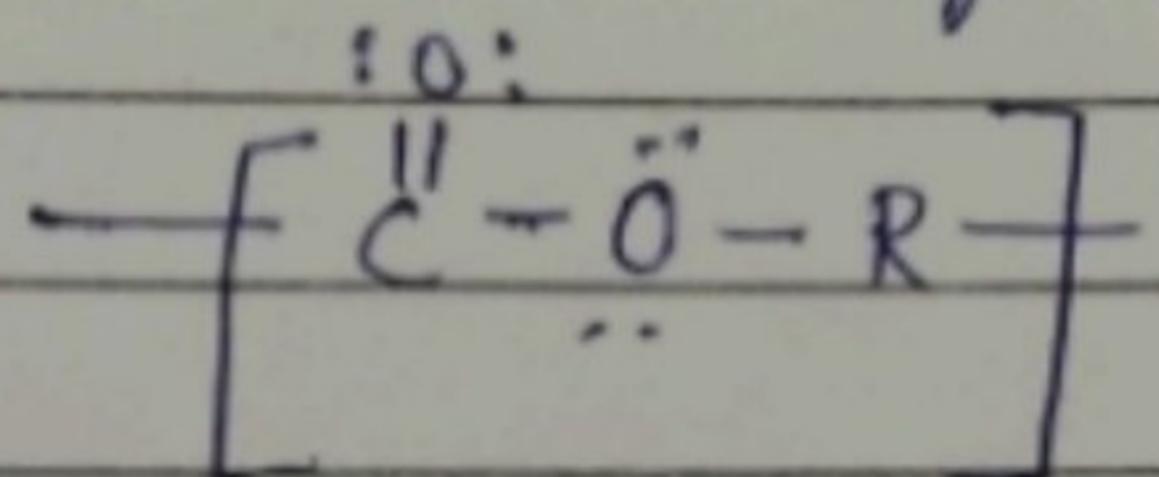
Primary Test :-

~~state~~ - solid

~~Colour~~ - Colourless

~~Odour~~ - Fruity smell

~~Solubility~~ - Soluble.


| S.No. | Experiment                                                                                   | Observation                         | Inference          |
|-------|----------------------------------------------------------------------------------------------|-------------------------------------|--------------------|
| 1.    | Flame Test: Take a organic comp. on & burn it with half of burner.                           | Gives white fumes                   | Aliphatic Compound |
| 2.    | Litmus Test: Take on Red or blue litmus paper into carbon comp. solution.                    | turns blue litmus to Red            | Acidic             |
| 3.    | Nitrogen Test : Organic comp + fresh soln of $\text{FeSO}_4$ + conc. $\text{H}_2\text{SO}_4$ | solution do not give yellow colour. | N - absent         |

4. Functional group:

(ii) Hydroxyl amine.  
 hydrochloride +  
 methanol +  $N\text{-KOH}$   
 sol<sup>n</sup> methanol +  $\text{NH}_2\text{OH}\text{.H}_2\text{O}$   
 +  $\text{KOH}$  sol<sup>n</sup> + dil.  $\text{HCl}$   
 + coal +  $\text{FeCl}_3$

Redish-Violet colour  
appearsester group is  
present.

Result : In the given organic compound the  
 -[COOR]. Ester group is present.



Teacher's Signature



Object :- Find out viscosity of given liquid with help of viscometer.

Apparatus :- Ostwald viscometer, relative viscosity bottle, beaker, etc.

Principle :-

$$\frac{x_1}{x_2} = \frac{t_1 d_1}{t_2 d_2}$$

$x_1$  = viscosity of water.

$x_2$  = viscosity of sol<sup>n</sup>.

$t_1$  = Time of water flow.

$t_2$  = Time of sol<sup>n</sup> flow.

$d_1$  = density of water.

$d_2$  = density of sol<sup>n</sup>.

Chemical Required :- water solution

Observation - I.

i) Room temp. = 27°C

iii) Viscosity of H<sub>2</sub>O = 0.1

iii) density of H<sub>2</sub>O = 0.1 gm/mol

iv) density of liquid = 1.005 gm/mol

Teacher's Signature.....

## Observation - II

- ii) Viscosity of water = 0.01 poise
- iii) density of water ( $d_1$ ) = 100 gm/mol
- iv) density of sol<sup>n</sup> ( $d_2$ ) = 1.01 gm/cm<sup>3</sup>
- iv) Time taken in sol<sup>n</sup> = 80 sec

## Calculation :-

$$1. \quad x_2 = \frac{t_2 d_2 \times x_1}{t_1 d_1}$$

$$t_2 = 80 \text{ sec} \quad t_1 = 70 \text{ sec}$$

$$d_2 = 1.005 \text{ gm/m}^3 \quad d_1 = 10 \text{ gm}$$

$$x_1 = 0.01$$

but  $t_1, d_2, t_1 d_1, x_1$  value = ~~inex~~  $\textcircled{1}$

$$x_2 = \frac{t_2 d_2 \times x_1}{t_1 d_1}$$

$$x_2 = \frac{80 \times 1.005 \times 0.01}{70 \times 1.0} = 0.114875 \text{ poise}$$

$$2. \quad x_2 = \frac{t_2 d_2 \times x_1}{t_1 d_1}$$

$$t_2 = 85 \text{ sec}$$

$$d_2 = 1.01 \text{ gm/cm}^2, \quad t_1 = 70 \text{ sec}$$

$$d_1 = 1.0 \text{ gm/cm}^2$$

$$x_1 = 0.01 +$$

$$x_2 = \frac{85 \times 1.01 \times 0.01}{70 \times 1.0} = 0.0122642 \text{ poise}$$



Teacher's Signature.....

③ Calculation :-  $\eta_2 = \frac{d_2 d_2 \times \eta_1}{t_1 d_1}$

$$d_2 = 90 \text{ sec}$$

$$d_2 = 1.015 \text{ gm/cm}^3$$

$$t_1 = 70 \text{ sec}$$

$$d_1 = 1.0 \text{ gm/cm}^3$$

$$\eta_1 = 0.01 \text{ poise}$$

$$\eta_2 = \frac{90 \times 1.015 \times 0.1}{70 \times 1.0} = 0.01365$$

Observation :- Viscosity of soln ( $\eta_2$ ) = 0.01365 poise

④ Calculation :-  $t_2 = 90 \text{ sec}$

$$d_2 = 1.020 \text{ gm/cm}^3$$

$$t_1 = 70 \text{ sec}$$

$$d_1 = 1.0 \text{ gm/cm}^3$$

$$\eta_1 = 0.01$$

$$\eta_2 = \frac{90 \times 1.020 \times 0.01}{70 \times 1.0}$$

$$= 0.13114 \text{ poise}$$

# Observation table - I.

DATE .....

Time taken by water flow ( $t_1$ )

70 sec

75 sec

65 sec

$t_1 = 70$  sec

Time taken by solution flow ( $t_2$ )

80 sec

80 sec

75 sec

$t_2 = 80$  sec

Observation :- Viscosity of  $\text{sol}^n = 0.114875$  poise.

# Observation Table - II

Time taken by water flow ( $t_1$ )

70 sec

75 sec

65 sec

$t_1 = 70$  sec

Time taken by  $\text{sol}^n$  flow ( $t_2$ )

90 sec

80 sec

80 sec

$t_2 = 80$  sec

Observation :- Viscosity of  $\text{sol}^n = 0.0122642$

# Observation Table - III

Time taken by water flow ( $t_1$ ) Time taken by  $\text{sol}^n$  flow ( $t_2$ )

70 sec

75 sec

65 sec

$t_1 = 70$  sec

90 sec

85 sec

95 sec

$t_2$  sec

Observation :- Viscosity of  $\text{sol}^n = 0.01365$

Teacher's Signature.....

⑤ Calculation IV

$$x_2 = \frac{t_2 d_2 x_1}{d_2 t_1}$$

$$x_2 = \frac{100 \times 1.025 \times 0.01}{7.0 \times 1.0}$$

$$= 0.01464 \text{ Poise}$$

$$t_2 = 100 \text{ sec}$$

$$d_2 = 1.025 \text{ gm/cm}^3$$

$$t_1 = 70 \text{ sec}$$

$$d_1 = 1.0 \text{ gm/cm}^3$$

$$x_1 = 0.01$$

observation Table IV<sup>th</sup>

| Time taken by water flow ( $t_1$ ) | Time taken by sol <sup>n</sup> flow ( $t_2$ ) |
|------------------------------------|-----------------------------------------------|
| 70 sec                             | 85 sec                                        |
| 75 sec                             | 90 sec                                        |
| 65 sec                             | 96 sec                                        |
| $t_1 = 70$ sec                     | $t_2 = 90$ sec                                |

~~observation :- Viscosity of sol<sup>n</sup> ( $\eta_2$ ) = 0.13114 Poise~~

## Observation Table - V

| Time taken by water flow ( $t_1$ ) | Time taken by sol <sup>n</sup> flow ( $t_2$ ) |
|------------------------------------|-----------------------------------------------|
| 70 sec                             | 95 sec                                        |
| 70 sec                             | 105 sec                                       |
| 65 sec                             | 100 sec                                       |
| $t_1 = 70$ sec                     | $t_2 = 100$ sec                               |

~~Observation :- Viscosity of solution ( $\eta_2$ ) = 0.01464 Poise~~

Result :- Viscosity of sol<sup>n</sup> at  $27^\circ C$  = 0.01464 Poise

Object :- To determine surface tension of given organic liquid by stalagmometer.

Apparatus & Chemical Required :- stalagmometer, beaker,  $H_2O$ , organic liquid, etc.

Principle :-

$$\frac{V_2}{n_2} = \frac{n_1}{d_1} \cdot \frac{d_2}{V_1} \quad \textcircled{1}$$

$\gamma_2$  = surface tension of organic liquid

$\gamma_1$  = surface tension of  $H_2O$  = 71.16 dyne/cm

$d_2$  = density of liquid = 0.78 g/ml

$d_1$  = Density of  $H_2O$  = 1.0 g/ml

$n_2$  = no. of drops of liquid

$n_1$  = no. of drops of  $H_2O$

Observation :-

Room temp. -  $30^\circ C$

density of water - 1 gm/cm<sup>3</sup>

surface tension of  $H_2O$  - 71.8

density of liquid - 1.5

Calculation I :-

$$V_2 = \frac{d_2 n_1 V_1}{d_1 n_2}$$

$$d_2 = 1.5 \text{ gm/cm}^3$$

$$d_1 = 1 \text{ gm/cm}^3$$

$$n_1 = 63$$

$$n_2 = 105$$

$$V_2 = \frac{1.5}{1} \times \frac{63}{105} \times 7.8$$

$$V_2 = 64.6200 \text{ dyne/cm.}$$

Calculation - II

$$V_2 = \frac{d_2}{d_1} \cdot \frac{n_1}{n_2} \cdot V_1$$

$$d_2 = 1.063 \text{ gm/cm}^3$$

$$d_1 = 1 \text{ gm/cm}^3$$

$$n_1 = 63$$

$$n_2 = 72$$

$$V_1 = 71.8$$

$$V_2 = \frac{1.063}{1} \times \frac{63}{72} \times 71.8$$

$$V_2 = 66.7829 \text{ dyne/cm.}$$

## Observation Table - I :-

| no. of drops of water ( $n_1$ ) | no. of drops of liquid ( $n_2$ ) |
|---------------------------------|----------------------------------|
| 60                              | 105                              |
| 64                              | 113                              |
| 65                              | 102                              |
| 63                              | 100                              |
| $n_1 = 63$                      | $n_2 = 105$                      |

~~Observation :- surface tension of liquid = 64.6200 dyne/cm~~

## Observation Table. II :-

| no. of drops of water ( $n_1$ ) | no. of drops of liquid ( $n_2$ ) |
|---------------------------------|----------------------------------|
| 60                              | 72                               |
| 64                              | 72                               |
| 65                              | 65                               |
| 63                              | 78                               |
| $n_1 = 63$                      | $n_2 = 72$                       |

~~Observation :- surface tension of liquid = 66.7829 dyne/cm.~~

Teacher's Signature.....

*Surajit  
09/03/2021*



Calculation - III

$$V_2 = \frac{d_2}{d_1} \cdot \frac{n_1}{n_2} \cdot V_1$$

$$d_2 = 1.075 \text{ gm/cm}^2$$

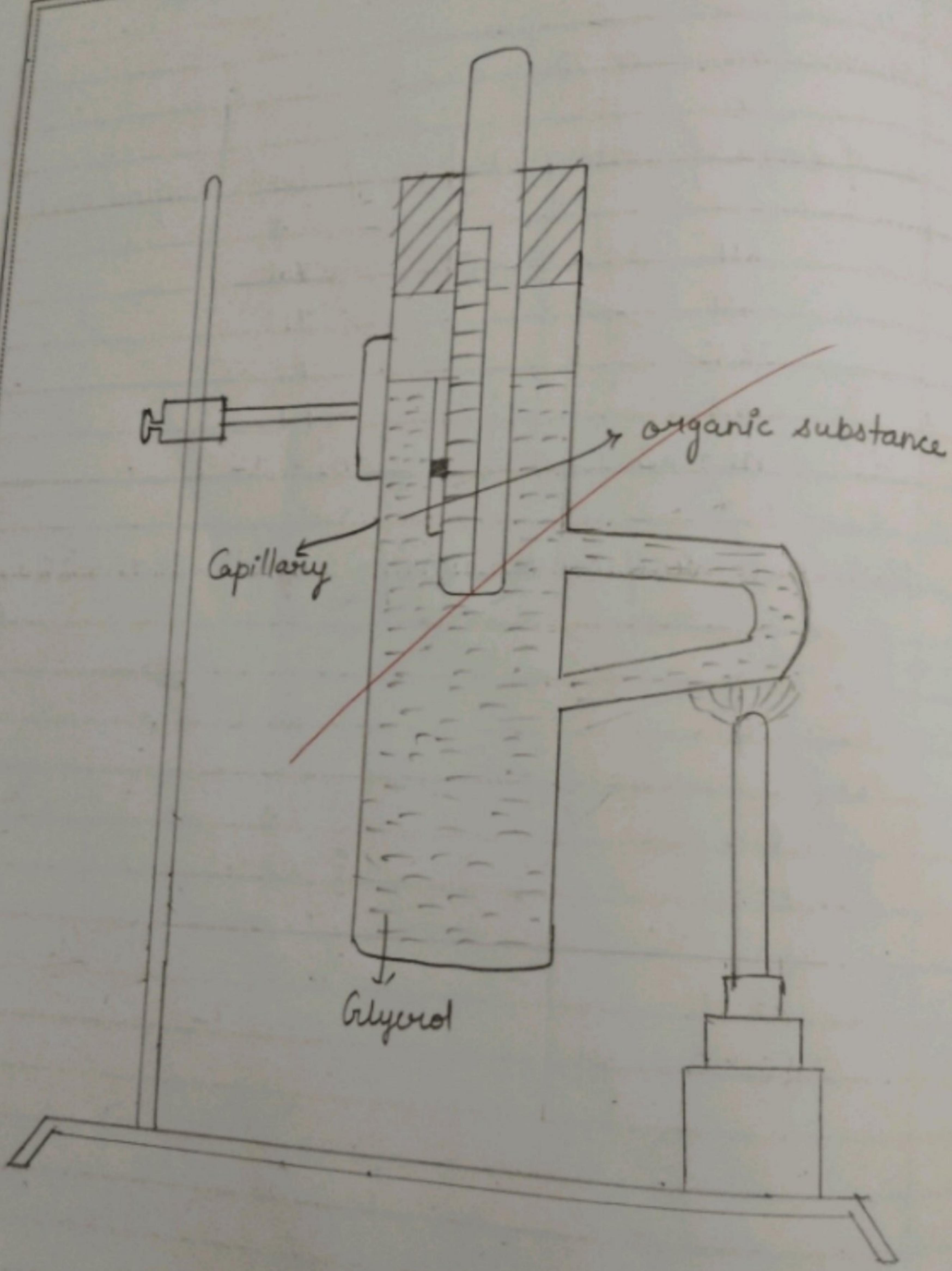
$$d_1 = 1.0 \text{ gm/cm}^2$$

$$n_2 = 72$$

$$n_1 = 63$$

$$V_1 = 71.8 \text{ Dyne/cm}$$

$$V_2 = \frac{1.075}{1} \times \frac{63}{72} \times 71.8$$


$$V_2 = 67.5368 \text{ dyne/cm.}$$

## Observation Table. III

| no. of drops of water ( $n_1$ ) | no. of drops of liquid ( $n_2$ ) |
|---------------------------------|----------------------------------|
| 64                              | 70                               |
| 64                              | 71                               |
| 65                              | 73                               |
| 63                              | 74                               |
| $n_1 = 63$                      | $n_2 = 72$                       |

Result :- Surface tension of liquid =  $67.5368 \text{ dyne/cm}$

Teacher's Signature.....



(1)

(2)

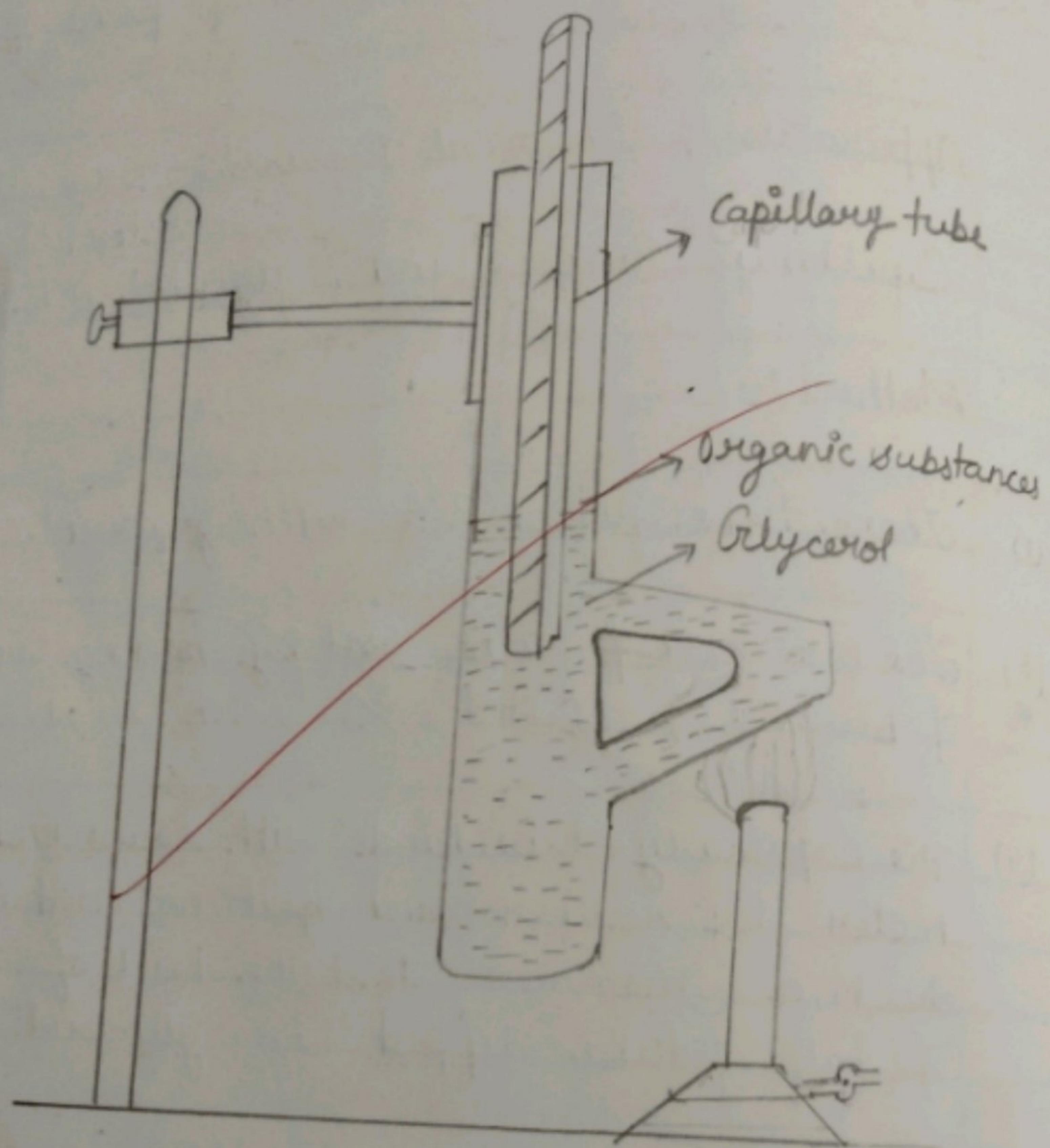
(3)

(4)

(5)

object :- To determine melting point of organic  
is solid

Apparatus & Chemical Required :- Urea, Thermometer, Rubber, Capillary tube, stand, glycerol, etc.


Method :-

- (1) Take tube filled  $\frac{2}{3}$  with glycerol.
- (2) The one end of tube seal by heating in the flame of burner & filled  $\frac{2}{3}$  with urea.
- (3) The capillary tube binds with lower end of thermometer by rubber band & it adjusted in tube in such a manner that the bulb of thermometer & half of tube dipped in glycerol.
- (4) Now heat the tube gently after some time the solid comp. just start to melt the temp. from thermometer noted at which sub. start to melt.
- (5) It is melting point of solid.

Result :-  $132.6^{\circ}\text{C}$  melting point of urea is obtained.

Teacher's Signature.....





obje

Ap

the

M

j) T

(2) J

8

(3) J

m

in

H

(4) N

J

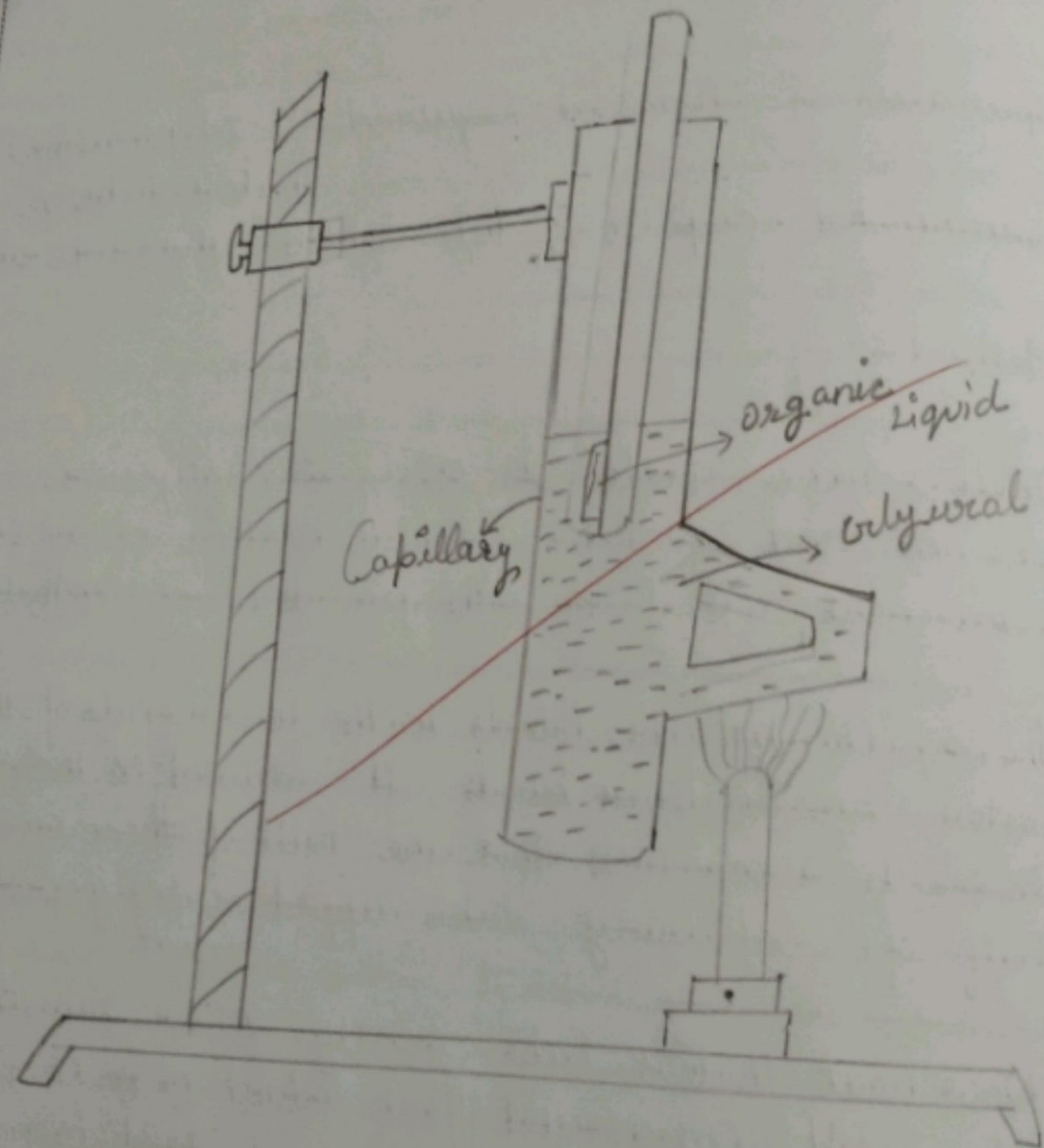
H

(5) C

C

object :- To determine melting point of organic solid.

Apparatus & Chemical Required :- Napthalene, Thiele's tube, thermometer, capillary tube stand, glycerol, etc.


Method :-

- (1) Thiele's tube filled to  $\frac{2}{3}$  with glycerol.
- (2) The one end of tube seal by heating of in flame of burners fill  $\frac{2}{3}$  with powder of napthalene.
- (3) The capillary tube bands with lower ends of thermometer by rubber bands, it adjusted in thiele's tube in such a manner that the bulb of thermometer. Half of Capillary tube dipped in glycerol.
- (4) Now heat thiele's tube gently. After sometimes the solid compound just start to melt & form thermometer noted at which sub. start to melt.
- (5) It is melting point of solid.

Result :-  $80.5^{\circ}\text{C}$  of melting point of Napthalene is obtained.

Teacher's Signature.....





Object :- To determine the boiling point of organic liquid.

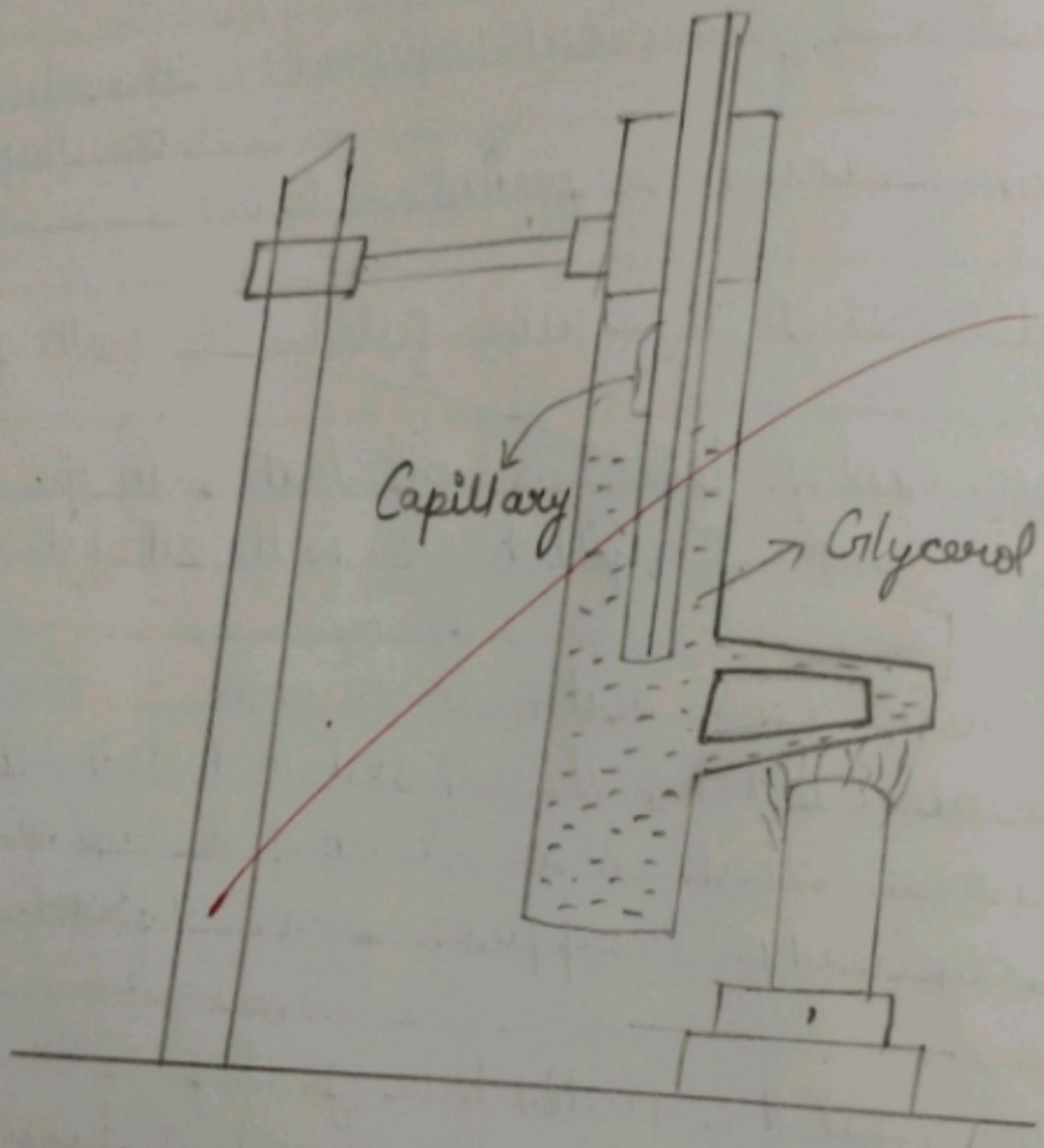
Apparatus & Chemical Required :- Ethanol, thiele's tube, thermometer, stand, Glycerol, etc.

Method :- (i) Thiele's tube filled  $\frac{2}{3}$  with glycerol

(ii) The one end of tube seal by heating in the flame of burner & filled  $\frac{2}{3}$  with ethanol.

(iii) The tube binds with lower ends of thermometer by rubber band & it adjusted in thiele's tube, such a manner that that bulb of thermometer & half of capillary disappear from glycerol.

(iv) Now heat the thiele's tube gently after sometime air bubbles comes out from end of tube the temp. of thermometer noted.


(v) The temp. of thermometer also noted at which bubble stopped from capillary on cooling. The B.P. of liquid is mean of both temp.

Result :- The 78.6 B.P. is obtained of ethanol.

Teacher's Signature.....

Emmett  
9/3/2021





Object :- To determine B.P. of organic liquid.

Apparatus & Chemical Required :- Methanol, thele's tube, capillary stand, glycerol, etc.

Method :-

- (i) ~~Thele's tube filled 2/3 with glycerol.~~
- (ii) ~~The one end of capillary tube seal by heating in the flame of burner & fill 2/3 with methanol liquid.~~
- (iii) The capillary tube binds with lower end of thermometer by rubber band and it adjusted in thele's tube in such a manner that the bulb of thermometer & half of capillary dipped in glycerol.
- (iv) Now heat the thele's tube gently, after sometime air bubbles comes out from end of capillary.
- (v) The temp. of thermometer also noted at which bubbles stop from capillary in cooling the boiling point of liquid is mean of both temp.

Result :- 65.7°C B.P. is obtained of methanol.

Teacher's Signature.....



Object :- To determine crystallisation of given impure organic solid by hot water.

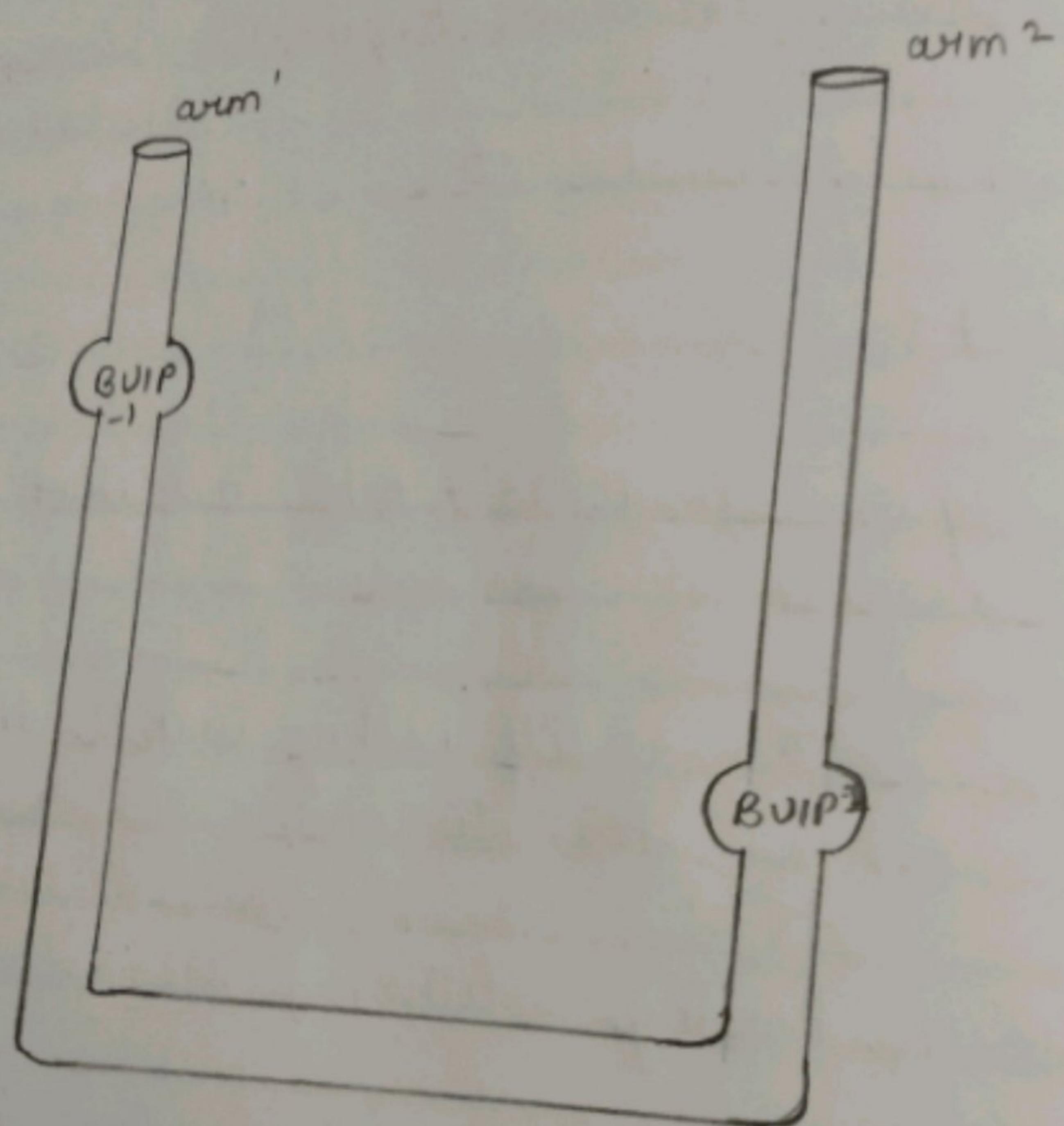
Apparatus & Chemical Required :- Benzoic acid, beaker, tripod stand, funnel, etc.

Method :-

(i) Take the required benzoic acid taken in beaker & add  $H_2O$  in beaker.

(ii) Above sol<sup>n</sup> heat till boiling until the whole substance has dissolved.

(iii) Filter the boiling solution & remain it to cold.

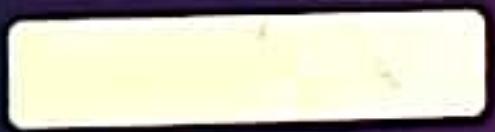

(iv) After sometime crystal of acid deposited in bottom.

(v) filter the crystal & dryed.

Result :- The colourless crystal of benzoic acid is obtain.

Teacher's Signature.....

Surajit  
9/03/2021




Oswald Viscometer



# R. K. GROUP OF COLLEGE

BEHIND KALWAR POLICE STATION, KALWAR, JAIPUR (RAJ.)

