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7.4 Morera’s Theorem

Let [ be a continuous function on an open set D. If

whenever T is the boundary of a closed rectangle in D, then f is analytic on D.

Since line integrals are unaffected by the value of the integrand at a single point,
the continuity of f is a necessary hypothesis. Note also that in the proof, we actually
require only that [ /' = 0 for rectangles whose sides are parallel to the horizontal
and vertical axes.

Proof

In a small disc about any point zy € D, we can define a primitive
o) = [ fc
20

where the path of integration is the horizontal followed by the vertical segments from
zp to z. If we then consider a difference quotient of F and apply the fact that _fl- f=0
around any rectangle, we may conclude (as in Theorems 4.15 and 6.2) that

F(Z +h) — F(Z) B 1 +h

P 7). fQde = f(2)

as h — 0. (Here we are using the continuity of f.) Hence F is analytic in a neighbor-
hood of zg. Since analytic functions are infinitely differentiable and F'(z) = f(2), f
is analytic at zo. Finally, since zo was arbitrary, f is analytic in D. O

Morera’s Theorem is often used to establish the analyticity of functions given in
integral form. For example, consider

f(z)=f < ar.
0

r+1
IfRez =x <0,
(o o] ]e:_rl (o o] o l
dt < e dt = ——
o t+1 0 x
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so that the integral is absolutely convergent and | f(z)| < 1/|x|. To show that f is
analytic in the left half-plane D : Re z < 0, we may consider

/1. f(dz = /1 ( um %dr) dz,

where I is the boundary of some closed rectangle in D.

Since
s o] Zt
f/ 71 4t a2
rJo t+1

converges, we can interchange the order of integration; hence

o o0 i e:! o0
/f=f / dzd::f 0dt =0
r o Jrt+1 0

by the analyticity of ¢’ /(z + 1) as a function of z. By Morera’s Theorem, then, f is
analytic in D.




6.13 Maximum-Modulus Theorem

A non-constant analytic function in a region D) does not have any interior maximum
points: For each z € D and 6 > 0, there exists some w € D(z; ) N D, such that

[fl@)| > | f(2)].

Proof

The fact that
[flw)] = |f(2)]

for some @ near z follows immediately from the Mean-Value Theorem. Since for
r > 0 such that D(z; r) © D we have

f)= %ﬂ f(z+re”ydo,

it follows that

r

1 n : .
[f(z)] = I |f(z 4 re')|do < max | f(z + re')]. 3)
T Jo 4

Similarly, we may deduce that | f (w) | = | f(z)| for some @ € D(z; r). For, to obtain
equality in (3), | /| would have to be constant throughout the circle C(z; r) and since
this holds for all sufficiently small » > 0, | f| would be constant throughout a disc.
But then by Theorem 3.7, f would be constant in that disc, and by the Uniqueness
Theorem, f would be constant throughout D. ]

Ironically, the Maximum-Modulus Theorem actually asserts that an analytic
function has no relative maximum, It is sometimes given a more positive flavor
as follows.

Suppose a function f is analytic in a bounded region D and continuous on
D. (We will, henceforth, use the expression “f is C-analytic in D” to denote
this hypothesis.) Somewhere in the compact domain D, the continuous function
| f| must assume its maximum value. The Maximum-Modulus Theorem may then
be invoked to assert that this maximum is always assumed on the boundary of
the domain.
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6.14 Minimum Modulus Theorem

If f is a non-constant analytic function in a region D, then no point z € D can be a
relative minimum of f unless f(z) = 0.

Proof

Suppose that f(z) # 0 and consider g = 1/f. If z were a minimum point for f, it
would be a maximum point for g. Hence g would be constant in [, contrary to our
hypothesis on f. O

Remark

We can also prove the Maximum-Modulus Theorem by analyzing the local power
series representation for an analytic function. That is, for any point a, consider the
power series

f@=Co+Cilz—a)+ Crlz—a) +---,

which is convergent in some disc around a. To find z near a and such that
[f @) > [f(e)], we first assume Cy # O and set z = a + de'’ with d > 0
“small”, and & chosen so that Cy and Cyde’” have the same argument. Then

|f(@)] = |Col
If ()] = |Co+ Ci(z —a)| — |Calz — a)> + C3(z —a)® + -+ |
> |Col +1C10] = F*|C2 + Ca(z —a) + -+ |.

Since the last expression represents a convergent series,
1 ' ' 1 '
1) = 1Col + |C16] = A = |Col + 51C1dl > 11 (@)l

as long as 6 < |Cy|/2A. Hence a cannot be a maximum point. Note that if
Cy = 0, the same argument can be applied by focusing on the first non-zero co-
efficient Cy.

This technique of studying the local behavior of an analytic function by consid-
ering the first terms of its power series expansion can be used to derive the following
result.

Recall that in calculus, relative maximum points were found among the critical
points (those points at which f* = 0) of a differentiable function f. The proposition
below shows a somewhat surprising contrast in the behavior of an analytic function
at a point where it assumes its maximum modulus.
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6.5 Power Series Representation for Functions Analytic in a Disc

If f 1s analytic in D(a; r) there exist constants Cy such that

f) = Cilz—a)

k=0

forall z € D(a; r).

Proof
Picka € D(a;r)and p > Osuchthat|la —a| < p <.
By the previous integral formula, if |z — a| < |a — a

L [ @,

2wi Je, ® =2

f(2) =

and using the fact that

I z—a (z —a)?

w—a (w—a) (w-—a)’

converges uniformly to 1/(w — z) throughout C,, (see Lemma 5.4)

7 —a (z — a)?

1 1
f(z)= 2— f(w) |:
T Jc, w —

a (w—a) (vw—a)d

=Cop)+Ci(p)z—a)+ Ca2(p)(z — a)z s o

Ce(p) = — ] AT/

2ri Je, (@ — a)kt!

where

+ —-:|dw

()

Note, then, that the coefficients Cy(p) are actually independent of p. For once again,

as in 5.5, we can apply (1) to conclude that f is infinitely differentiable at & and

) (g

Cr(p) = for each p,0 < p < r, and all k.

k!

Hence, forall z € D(a;r)
o0
f@) =2 G —a)
k=0

with

Ck

- W@ lf f(z)
= dz.

k! 2mi Je, (z — a)k!



2.12 Uniqueness Theorem for Power Series

Suppose > -, Cnz" is zero at all points of a nonzero sequence {zi} which converges
to zero. Then the power series is identically zero.

[Note: If we set f(z) = > C,z", it follows from the continuity of power series
that f(0) = 0. We can show by a similar argument that f’(0) = 0; however, a
slightly different argument is needed to show that the higher coefficients are also 0.]

Proof

Let
f(Z]=Cn+C12+szz+---.

By the continuity of f at the origin
Co= f(0)=lim f(z) = lim f(zx)=0.
z—0 k=00

But then

f(2)

-
4

1s also continuous at the origin and

g(2) = =Ci+ Coz+C322 +---

¢, =20) = lim L2 = 1im L&) _y
=0 2 k—=oo Zk
Similarly, if C; =0for0 < j < n, then
. Z ) Zk
C, = lim f(2) = lim f(,f“] =0,
z—=0 " k—oo  Zp

so that the power series is identically zero. 0
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