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56 COURSE NOTES

Case 1: Suppose the canonical factorisation contains one r-cycle with r > 4. Since
a; commute, we may assume that this is the first cycle a; = (i, 12,13,...,1;). Since N
is normal, we have for b = (i1, 12,13) € A, that the following element is in N:

N3 a(ba'b") = (aba )b’
= (a1ba1_] )b
. [[:Lh i-lv ij’) ey i’T] (ihiZ! i'S){i])iZ) i'33 KR 71.-:‘)_]](:"31 i'la 11}
(14.30)
= (‘i.g, i.3, 1.4](1.3, i.z, i } (Theorem 14.9 (7))
= (14,12, 1) (13,12, 1)
= (:Llh i’Z) i’] J'
This yields the desired 3-cycle.
Case 2: Suppose the canonical factorisation of a contains only transpositions and
exactly one 3-cycle, i.e., a = (iy,12,13)(is,15)az - - - a,. For b = (iy,13,14) € A,
N3 a(ba™'b™") = [[(in, 2, 13) (L, i5)] (i1, B2, 1) (i, B2, 83) (i, )17 (i 2, 1)
- (1'-21 i-33 1'5](1'4, :LZ! 1])
(14.31) o
= (i3, 15, 12) iz, 11, 1a)
= (1.-3\ i'Sy il} 1.-1\ ]'4}
which is a 5-cycle, so we have reduced the problem to Case 1.

Case 3. Suppose the canonical factorisation of a contains more than one 3-cycle,
ie, a= (i, i 13)(is,15,16)az - - ap. For b = (i4,12,14) € Ay
(14.32)

N3 a(ba b)) = [[(i1, iz, i3) (s 15, i6)] (i1, 12, 1) [(i1, 12, 13) (ia, 15, 16)] '] (14, 12, T1)
= (12,13, 15) (4, 12y 1)
and we conclude as in Case 2.
Case 4: Suppose the canonical factorisation of a contains only transpositions, a =
(41,12)(i3,14)az - - a,. Choose i5 # 11,1z, 13, 14, and let b = (i, 13, i5).
N 3 a(ba 'b™") = [aliy, i3, i5)a "](is, 13, 11)
(14.33) e
= (2,1, alis)) (is, 15, 1)

If a(is) = 15 then we obtain a 5-cycle and hence Case 1, if u(iy,g Bé/132 follows
(12,14, a(is)) = (a(i1),a(iz),a(is)) and (is,13,11) are disjoint (since a is bijective),
which yields Case 3. O
14.31. Exercise. Write

1 2 4 7
(14.34) - 345 6 89 10 11 12 13 14
246811214135 7 9 1113

(1) as a product of disjoint cycles,
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(2) as a product of transpositions.
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Exercise 10.12.

(1) This can be either checked by a direct computation (recommended), or by the
observation that the action can be represented as (M, &) — ME, where ME
is the standard matrix product of a 2 x 2 with a 2 x 1 matrix. Axiom (1) for
group actions follows then from the associativity of matrix multiplication, and
axiom (2) from EE = &, where E is the identity matrix.

(2) We have G - 0 = {0}, so the origin 0 € R? is a fixed point and orbit of the

X
G action. Furthermore, given a point # 0, there is a matrix M € G
Y

X

such that
y

) =M (:)), this matrix is given by M = (x ?) if x # 0 and
Y

M = (x :)) ify # 0. Hence R*\ {0} = G - (;) is the only other orbit of the
y

G action, and 0 is the only fixed point.

Exercise 10.13.

Tcos
rsing
{0} (r = 0) and all circles of radius r > 0 centered at the origin. 0 is thus the
only fixed point.
(2) The orbits are H - 0 = {0}, and the rays H - (C?S d)) = { (QC?S ¢) rae R>D}
sin ¢ asin ¢
for ¢ € [0, 27). 0 is therefore again the only fixed point.

(3) The orbits are H- 0 = {0}, H - (:) - {( TC‘]) ‘ac R>g} forr € R\ {0} (ie.,

(1) The orbits are H - ; = { ( ) e [0,27:}} for r > 0, i.e., the origin

ra
the branches of hyperbolas satisfying the equation xy = 12, where r values
with the same modulus but opposite sign correspond to different orbits) and

H- ( ' ) = { ( m_]) Ta€ R>0} for r € R\ {0} (the branches of hyperbolas
-T —ra

satisfying the equation xy = —r?). 0 is the only fixed point.
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(4) The orbits are the one-element sets H - (;) = { (r) } for r € R, and the

0

0
straight lines H - ( ) = {(x) X E R} for r € R\ {0}. Hence Fixu(R?) =
T T

)7+

10 0 -1
(5) We have H = {:t (0 ]) ,E (1 0 )} The H action yields /2 rotations in

[? about the origin. The orbits are H-0 = {0}, H- (X) = {:t (x) , £ ( Y ) },
Y Y —X

which are disjoint for x > 0,y > 0, say. 0 is the only fixed point.

Exercise 10.22.
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(2) (4n,+)1s generated by | and thus cyclic.
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5.3. Theorem. Every subgroup of a cyclic group is cyclic.

Proof. Let G = (g) and H < G. Every h € H can be expressed as h = g™ for some
m € Z. Since the trivial group H = {e} is cyclic we may exclude this case from now
on and assume h # e. Thus there exists an element g™ € H with m # 0. Since
inverse axiom g™ € Himplies g™ € H there is g™ € H with m > 0, and hence the
set I = {k € N: g*¥ € H} is non-empty. Let s be the smallest element of I and g™
an arbitrary element of H. Let q,r € Z be such that m = gqs + 1, 0 < r < 5. Now
g"=g™ % =gM(g*) 9 € H. If r # 0 then r € I and we have a contradiction with s
being minimal. If r = 0, then m = gs, so g™ = (g*)9, thatis, H C (g*). Since g* € H
we also have (g*) C H and thus H = (g%). O

Since Z is cyclic, we have the following classification of subgroups of Z.

5.4. Corollary. Every subgroup of Z is of the form sZ := {sm : m € Z} with s € Z,.
This follows directly from the previous proof: recall that 1 is the generator of Z,
and our explicit construction of the cyclic subgroups H shows that H = sZ in the
present case.
Note that if s > 0 then s is the smallest integer > 0 in the subgroup.

5.5. Definition. Let G be a group. The order of a € G is the order of the cyclic group
(a) and is denoted by ord a := |{a}.

5.6. Theorem. The order of a € G is either infinite or equal to the smallest integer
s > 0 such that a® = e. In the latter case (a) = {e,a,a?,...,a* '}

Proof. 1f a* # o’ for all i # j, then ord a = co. Otherwise there are i < j such that
a' = d!, and hence a* = e withk = j —i > 0. Let s > 0 be the smallest integer
such that a® = e. Then all elements in the set H = {e,a,a? ...,a* '} are distinct
(otherwise there would be a smaller element k < s such that a* = e) and is closed
under multiplication since a* = e. Since H is finite, this implies H is a group and thus

H = (a). a
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5.7. Corollary. Suppose ord a = s. Then a* = e if and only if k € sZ.

Proof. If k = sm for some m € Z then a* = (a*)™ = e. On the other hand, if a* = e
then H = {k € Z : a* = e} is a subgroup of Z and hence H = s'Z for some integer
s’ > 0 (Corollary 5.4). By Theorem 5.6 s is the smallest integer > 0 such that a® = e
andsos =s'. O

5.8. Theorem. Suppose ord a = n. Then forall m € Z

n

(5.1) orda™ = m.

Proof. Let d = ged(m,n), m = dm’, n = dn’, with m’,n’ coprime. Set r = ord a™.
Since e = (a™)" = a™ we have by Corollary 5.7 mr = nt for some t € Z. Divide by
d to obtain m'r = n't. Since m’,n’ are coprime n’ divides v, son’ < r. On the other
hand (a™™ = (™)™ =e™ =esor < n’. We conclude r = n". O

The following two corollaries follow directly from the above theorem.

5.9. Corollary. If ord a = n then (a) = (a™) if and only if m, n are coprime.
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3. SUBGROUPS

3.1. Definition. A non-empty subset H C G is called a subgroup, if H is a group
with respect to the same composition as in G; we will write in this case H < G.
H is called a proper subgroup if H # G; we write H < G.

3.2. Example.
@) (Z,+) < (Q,4) < (R, +) < (C,+).
(2) If d € N divides n € N, then (nZ, +) < (dZ, +).
(3) The groups in Example 1.8 and Exercise 2.3 are subgroups of GL(2, R).

3.3. Theorem. Let G be a group and H € G a non-empty subset. Then H is a sub-
group if and only if

3.1) {a,b€H) = (abe Handa ' € H).

Proof. Assume H is a subgroup. Then the image of H x H under the composition
0:G x G — G satisfies o(H,H) C H, i.e., ab € H for all a,b € H. If e is the identity
in H, we have ¢’ = e, but this means by Lemma 1.3 that e is also the identity in G.
Hence the inverse of a in H is also the inverse of ain G,and so a™' € H.

Conversely, assume (3.1). Then the composition o on G, restricted to H, yields a
map H x H — H, (a,b] — ab. The map is clearly associative (since this is true in the
full set G), and we only need to show that the identity e in G is contained in H. But

this follows from taking b = a ™' in (3.1). ]
3.4. Corollary. Let G be a group and H C G a non-empty subset. Then H is a sub-
group if and only if

(3.2) (a,b e H) = (ab™' € H).

Proof. Assume H is a subgroup. Let a,b € H. Then, by Theorem 3.3, b' € H and
ab™' € H. On the other hand, assume (3.2) holds. In particular (fora = e) b € H
implies b~' € H and hence (a,b € H) = (a,b”' € H) = (ab € H) by (3.2). Thus by

Theorem 3.3 H is a subgroup. ]
3.5. Theorem. Let G be a group and H C G a finite non-empty subset. Then H is a
subgroup if and only if

(3.3) (a,b € H) = (ab € H).

Proof. The first implication follows from the previous theorem. Hence assume (3.3)
holds. Since G is a group, for every fixed a € G the map G — G, x — ax, is
injective. If a € H, then the restriction of this map to H yields, in view of (3.3), a the
map H — H, x — ax, which is still injective. But since H is finite, injective implies
surjective and hence bijective. Hence if y = ax € H, the inverse map is H — H,

12 ‘COURSE NOTES

y — x = a'y. The choice y = a implies e € H and the choice y = e implies
a'eH. m}

3.6. Example. Let G = {e, a, b, c} be the Klein four group as defined in 1.13. The
above theorem shows that {e, a}, {e, b}, (e, c} are subgroups of G.

3.7. Theorem. Consider the groups H; < Gy, H; < Gy and let ¢ : G; — Gy bea
homomorphism. Then

(1) the image @(H,) is a subgroup of G,.

(2) the pre-image @' (H;) is a subgroup of G;.

Proof. (1) ¢(H,) is evidently non-empty. We have for a,b € H, that @(a)p(b) =
@lab) € @(H;) and @(a)”’' = @(a™") € @(H,). The claim follows from Theorem 3.3,

(2) Clearly ¢ € ¢ '(H;) and the latter is non-empty. a,b € ¢ '(H;) implies
¢(a),@(b) € Hz and hence ¢(ab) = ¢(a)p(b) € Hz and @(a)”’ = @(a') € H,.
Therefore ab,a ' € ¢ '(H;), and claim (2) follows from Theorem 3.3. m]

3.8. Corollary. Let ¢ : G; — G; be a homomorphism.

(1) im ¢ is a subgroup of G;.
(2) ker @ is a subgroup of G;.



