

R.K.
GROUP OF COLLEGE

Behind Kalwar Police Station, Kalwar, Jaipur (Raj.)

ASSIGNMENT

R.K. VIGYAN P.G. MAHAVIDHYALAYA

Affiliated to University of Rajasthan, Approved by Govt. of Raj.)

Kalwar Road, Kalwar, Jaipur (Raj.)

Website : rkgroupofcollege.com, Mob. No. : 9314501146

E-mail : hrshreebalajieducationsamiti@gmail.com

B.A. / B.Sc. / B.Com.

ASSIGNMENT WORK / MIDTERM TEST

Session 20 - 20

Semester

Name of Student Teena Jajoriya **Father's Name** Rameshwar Jajoriya

Roll No. Enrollment No.

Year Semester

ASSIGNMENT WORK

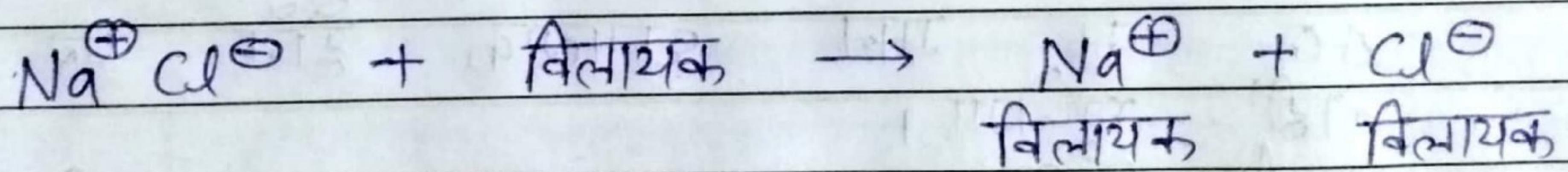
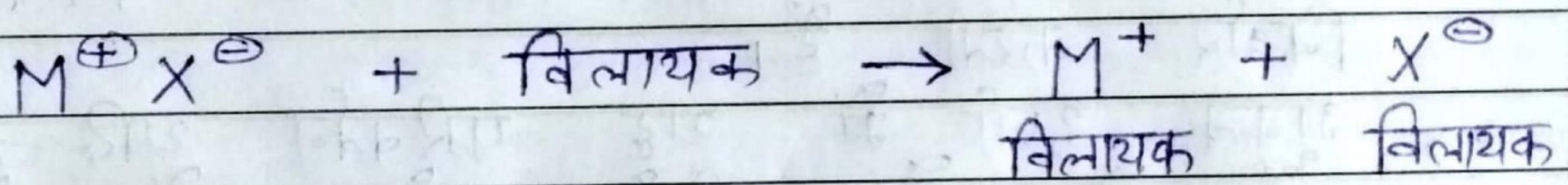
FLP-II

प्रश्न-1 (a) आधिकारिक थोर्डिंग की विवेषता व विलयन के उपर्युक्त विज्ञान को समझाइए ?
 (b) आधिकारिक थोर्डिंग की विवेषता को प्रभावित करने वाले कारकों का उल्लेख कीजिए।

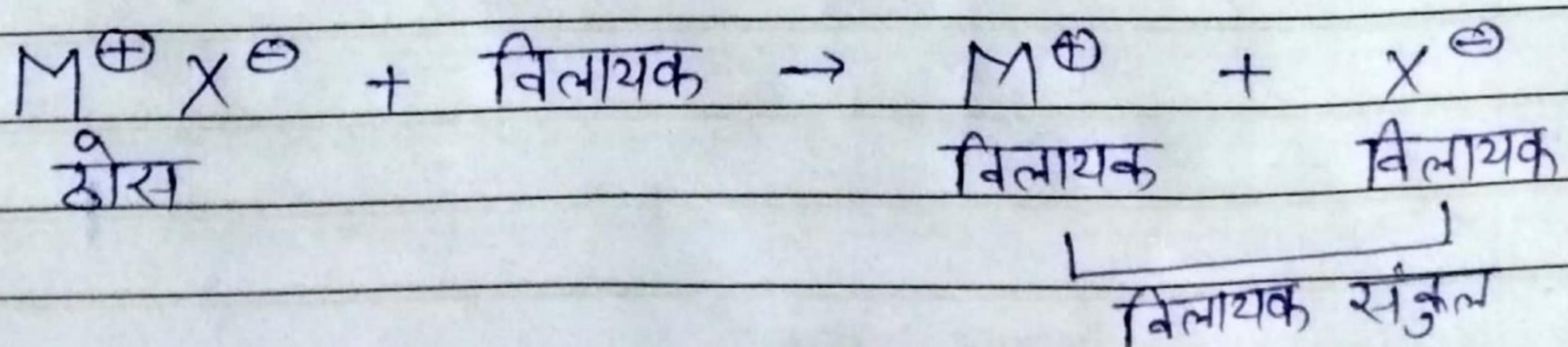
प्रश्न-2 (a) VSEPR सिद्धांत के आधार पर SF_4 व ICl_5 की संरचना को समझाइए ?
 (b) VSEPR सिद्धांत क्या है ? इस सिद्धांत के विभिन्न नियमों को लिखिए ?

प्रश्न-3 (a) सात क्रिस्टल समूह को बताइए ?
 (b) क्रिस्टलीय और अक्रिस्टलीय डोस्य में क्या अंतर है समझाइए ?
 (c) परिमैय धातांक के नियम को परिभ्राष्ट कीजिए ?

प्रश्न-4 (a) क्या होता है रखनी के साल में विघुत अपघटन मिलाया जाता है ?
 (b) जब सत्कोहल मिलाने पर नमक का विलयन दृष्टिगत हो जाता है क्या होता है ?
 (c) कैटे हुए रसायन पर बढ़ते हुए रक्त को रोकने के लिए $FeCl_3$ का विवरण लगाया जाता है क्यों ?



प्रश्न-1 (a) आधिकारिक योगिकों की विलयता व विलयन के उपर्युक्त विज्ञान की समस्याएँ ?

उत्तर :- आयनिक धौगिकों की विलेयता :-


आयानिक पाठ्यकार का विवरण ।

जब किसी
दूसरा की दृव में छोलते हैं तो उसके कठोर
क्रियतात्म जालक की छोड़फाल दृव के
अनुभुवों के बीच में वितरित हो जाते
हैं । जब आयानिक दृव में छोलते
हैं तो विपरीत आवैरित । आयनी में
दूसरे बात है ।

→ इसी नियम पूरकार प्रक्रिया के बारे में :-

→ आर्थिक वैधिकी की जब विभायक में विभायक से विभायक निर्माण करके विभायक संकुल का करते हैं।

Teacher's Signature.....

→ आयनिक यौगिकों को जल में विलेय करने पर आयनिक यौगिक का धनावैशित भाग H_2O के तंत्रणावैशित भाग से छुटता है तथा ठोस का तंत्रणावैशित भाग जल के धनावैशित भाग से छुटता है। इस प्रकार विलायकों (H_2O) में वियोजित हो जाते हैं, आयनिक यौगिक के दबाव हैं।

* विलयन का ऊर्जा विज्ञान (Energetics of dissolution):-

- किसी पदार्थ के धुलने पर विलयन की मुक्त ऊर्जा में जो परिवर्तन (ΔG) आयेगा उस पर ही उस पदार्थ की विलेयता निर्भर करती है।
- मुक्त ऊर्जा में यह परिवर्तन यदि तंत्रणात्मक है तो ठोस विलेय हो जायेगा लेकिन ΔG का मान धनात्मक होने पर पदार्थ नहीं धुलेगा।
- किसी निश्चित ताप पर मुक्त ऊर्जा परिवर्तन का मान तन्त्र की ऐन्थल्पी (enthalpy), ΔH तथा स्ट्रॉपी (entropy) ΔS परिवर्तन पर निर्भर करता है।

(b)

आयनिक यौगिकों की विलेयता को प्रभावित करने वाले कारकों का उल्लेख कीजिए?

उत्तर :- आयनिक यौगिकों की विलेयता को प्रभावित करने वाले कारक :-

आयनिक यौगिकों की विलेयता को प्रभावित करने वाले कारक निम्न प्रकार हैं :-

आयनिक आकार :-

1. किसी आयनिक यौगिक की विलेयता उसकी जातक ऊर्जा व विलायकन ऊर्जा पर निर्भर करती है।

→ जातक ऊर्जा का मान क्रिस्टल जानकृत में उपरियत धनायन व नष्टायन त्रिज्याओं के योग के व्युत्क्रमानुपाती होता है।

$$U \propto \frac{1}{R_1 + R_2}$$

→ इसी प्रकार यदि धनायन की त्रिज्या व नष्टायन की त्रिज्या में परिवर्तन होता है तो आयनिक यौगिकों की विलेयता प्रभावित होती है।

→ किसी यौगिक के लिए विलायकन ऊर्जा उसके धनायन व नष्टायन की विलायकन ऊर्जा के योग के बराबर होती है।

$$\Delta H_s = \Delta H_s^{\oplus} + \Delta H_s^{\ominus}$$

यहाँ ΔH_s^{\oplus} = धनायन की विलायकन ऊर्जा

ΔH_s^{\ominus} = नष्टायन की विलायकन ऊर्जा

Teacher's Signature.....

→

अतः जालक ऊर्जा व विलायकन ऊर्जा दोनों ही विलेयता को प्रभावित करती है।

2.

आयनिक आवेश :-

आयनिक आवेश वर्णन पर आयन विलायक की आपसी क्रिया में निकली विलायकन ऊर्जा में उतनी वृद्धि नहीं हो पाती है जितनी जालक ऊर्जा में होती है। जिसके कारण अधिक आयनिक आवेश वाले क्रिस्टल अधिकांश अविलेय होते हैं।

→

इसी कारण सल्फेट, फारफैट आदि बहुसंयोजी तंदणायन जल में कम विलेय होते हैं। जबकि बहुसंयोजी धनायनों के सल्फेट इत्यादि तगड़ा अविलेय होते हैं।

यांगिक आवेश	धनायन पर	तंदणायन पर
-------------	----------	------------

LiF

+1

-1

MgF₂

+2

-2

MgO

+2

-2

Al₂O₃

+3

-3

3.

विलायक का डाइलैनिट्रिक रिशरांक :-

आयनिक प्रकार्य ध्रुवीय विलायकों में अधिक विलेय होता है। अधिक ध्रुवीय विलायक होने से इस डाइलैनिट्रिक रिशरांक का मान भी होता है। इससे विलायकन

उर्जा बढ़ जाती है।
 → किसी आयन के लिये विलायकन उर्जा

$$H_s = \frac{Z^2 e^2}{2\pi} \left(1 - \frac{1}{e} \right)$$

जहाँ e डाइलैबिट्रक स्थिरांक है।

→ जितना अधिक e का मान होगा $\frac{1}{e}$ उतना ही कम तथा H_s अधिक होगा। जिससे आयनिक परामर्श की विलेयता बढ़ेगी।

4. तापक्रम :-

जब विलेय को विलायक में धोना जाता है तो विलयन करने की प्रक्रिया उष्माशोषी हो सकती है या उष्माशैषी प्रक्रिया हो सकती है।

→ इसे निम्न प्रकार से समझाया जा सकता है :-

विलेय + विलायक \rightarrow विलयन + उष्मा
 (उष्माशैषी $\Delta H = \Theta$)

विलेय + विलायक + उष्मा \rightarrow विलयन
 (उष्माशोषी $\Delta H = \oplus$)

उष्माशैषी अभिक्रियाओं के लिए ΔH का मान तथात्मक होता है अतः ताप बढ़ाने से उनकी विलेयता में कमी आती है जबकि उष्माशोषी अभिक्रिया के लिए ΔH का मान व्यनात्मक होता है अतः ताप बढ़ाने पर उनकी विलेयता में वृद्धि होती है।

* आयनिक यौगिकों की विलेपता को समझाने के लिए फाजान्स ने निम्न नियम दिए :-

फाजान्स ने

आयनिक यौगिकों की विलेपता को समझाने के लिए नियम दिए जो निम्न प्रकार है :-

(A) धनायन से सम्बन्धित कारक :-

धनायन से सम्बन्धित

कारक निम्न है :-

(i) धनायन का आकार :-

धनायन का आकार कम होने पर तथा आवेश का मान अधिक होने पर त्रैधनायन के e- धनायन के नागिक दूरा अधिक बल से आकर्षित होते हैं।

→ इसलिए दूरी आकार का धनायन त्रैधनायन को आसानी से ध्वनित कर सकता है और आयनिक क्षेत्र में सहसंयोजक गुण बढ़ जाते हैं।

Eg:- आकार का क्रम :-

$$Be^{+2} < Mg^{+2} < Ca^{+2} < Sr^{+2} < Ba^{+2}$$

आकार का क्रम

→ सहसंयोजक गुण व ध्वनि शक्ति कम होती है।

धनायन की ध्वनि

1

क्षमता

धनायन का आकार

(iii)

धनायन पर आवेश :-

जैसे - ऐसे धनायन पर

आवेश का मान बढ़ता है तरी - तरी धनायन
की त्रिकायन को ध्युवित करने की लम्बता
बढ़ती है।धनायन की ध्युवा
लम्बताधनायन पर
आवेशEg:- $Na^+ < Mg^{+2} < Al^{+3}$

→ ध्युवा शावित बढ़ती है।

→ सहसंयोजक गुण बढ़ते हैं।

→ गलनोंक कम होते हैं।

त्रिकायन से सम्बन्धित कारक :-

सम्बन्धित कारक निम्न हैं:-

त्रिकायन का आकार :-त्रिकायन का आकार जितना
करा होता है उसके e- का नाभिक द्वारा
आकर्षण बल उतना ही कम होता है।→ प्रिसके कारण धनायन द्वारा त्रिकायन की असाधा-
री से ध्युवित कर लिया जाता है अर्थात् त्रिकायन
का आकार बढ़ने पर उसकी ध्युवा शावित
बद जाती है।

नैदृग्यन की ध्रुवण \propto नैदृग्यन का आकार
समता

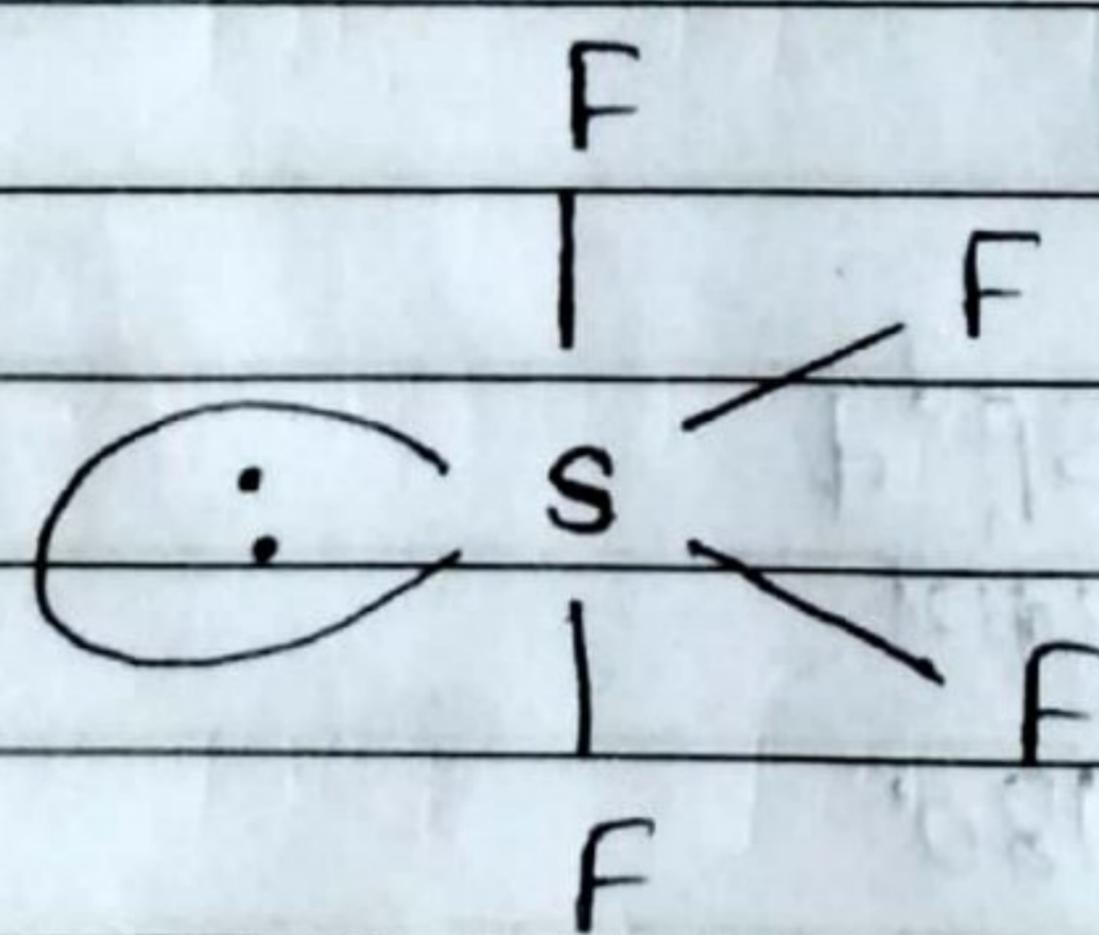
Eg: $F^- < Cl^- < Br^- < I^-$

- ध्रुवणीयता बढ़ती है।
- आकार बढ़ता है।
- सहसेयोजक गुण बढ़ते हैं।
- गलनांक कम होता है।
- जल में विलेयता घटती है।

(ii) नैदृग्यन पर आवेश :-

किसी नैदृग्यन पर आवेश की वृद्धि हो जाने से या अतिरिक्त e- जुड़ने से e-e- के मध्य प्रतिक्रिया बढ़ जाती है जिसके परिणाम स्वरूप आकार में वृद्धि हो जाती है अतः आकार में वृद्धि होने से नैदृग्यन की ध्रुवणीयता बढ़ जाती है तथा इसके सहसेयोजक गुणों का मान बढ़ जाता है।

Eg: $Li^- < Li_2 O^{2-} < Li_3 N^{3-}$


- आकार बढ़ता है।
- ध्रुवणीयता बढ़ती है।
- सहसेयोजक गुण बढ़ता है।

प्रश्न-2 (a) VSEPR सिद्धांत के आधार पर SF_4 व ICl_2 की संरचना को समझाइए?

उत्तर:- VSEPR सिद्धांत के आधार पर SF_4 व ICl_2 की संरचना निम्न प्रकार हैः-

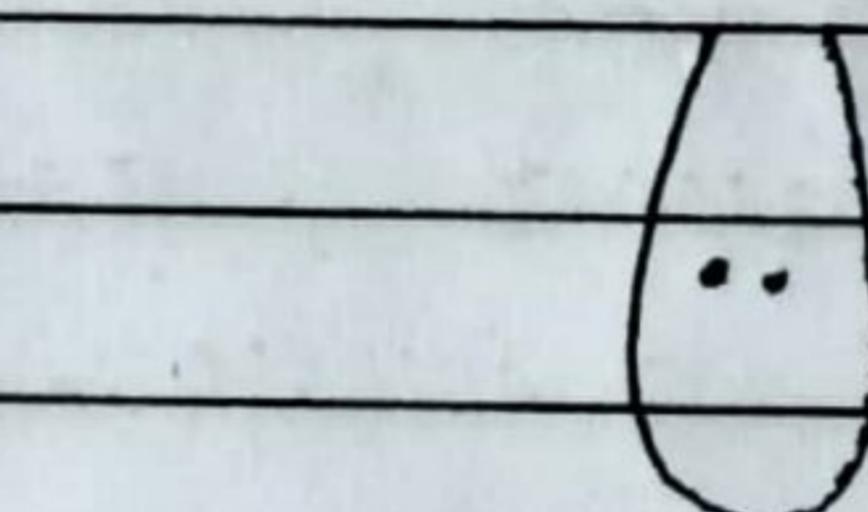
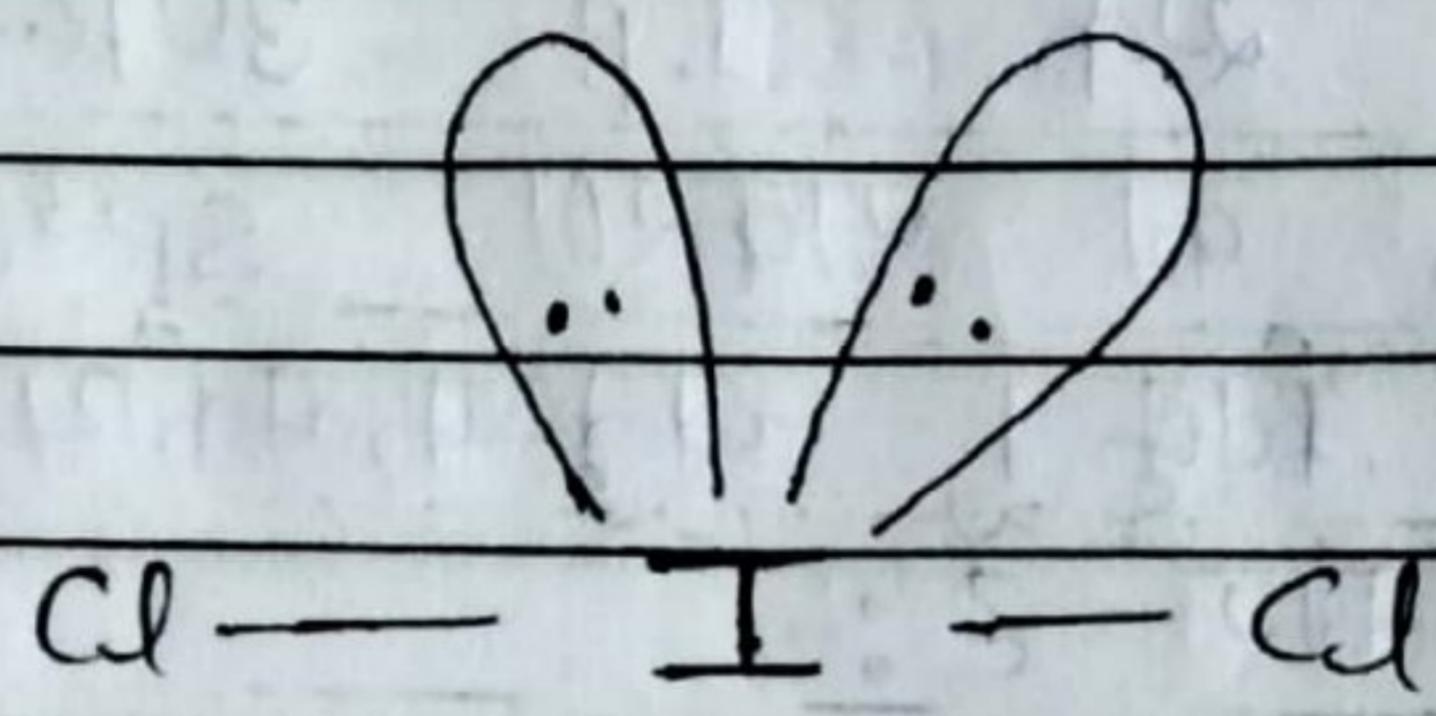
(i) SF_4 की संरचना :-

SF_4 में केन्द्रीय परमाणु कोश में $6e^-$ होता है जिसके संयोजकता कोश में $6e^-$ उपरियत होती है जिसमें चार e^- बनती हैं तथा एक J.P. उपरियत होती है। इस प्रकार SF_4 का संकरण sp^3d होता है तथा इसकी आकृति विकृत-चतुर्षफलकीय होती है जिसकी संरचना निम्न प्रकार हैः-

संकरण = sp^3d

आकृति = विकृत-चतुर्षफलकीय (See-Saw)

(ii) ICl_2^- की संरचना :-



ICl_2^- में केन्द्रीय परमाणु कोश में आयोडीन (I) होता है जिसके बाह्यतम कोश में सात e^- उपरियत होती है।

→ क्वोर्टीय परमाणु आयोडीन से दो बन्धों द्वारा

जुड़े रहते हैं।

→ आयोडीन परमाणु के ऊपर negative charge होता है इस कारण कुल e^- की संख्या आठ होती है।

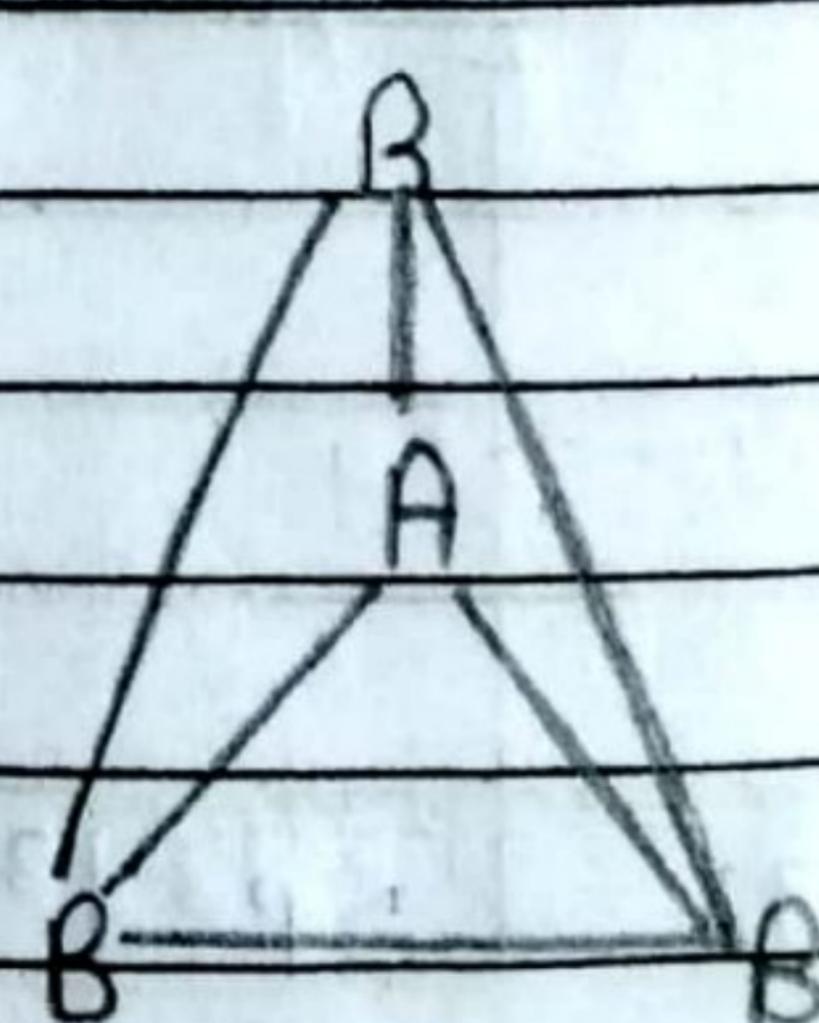
→ इस प्रकार ICl_2^- में तीन $l.p.$ उपरित होते हैं तथा दो $B.p.$ उपरित होते हैं इस कारण इसका संकरण SP^3d होता है तथा इसकी आकृति रैखीय होती है।

संकरण = SP^3d

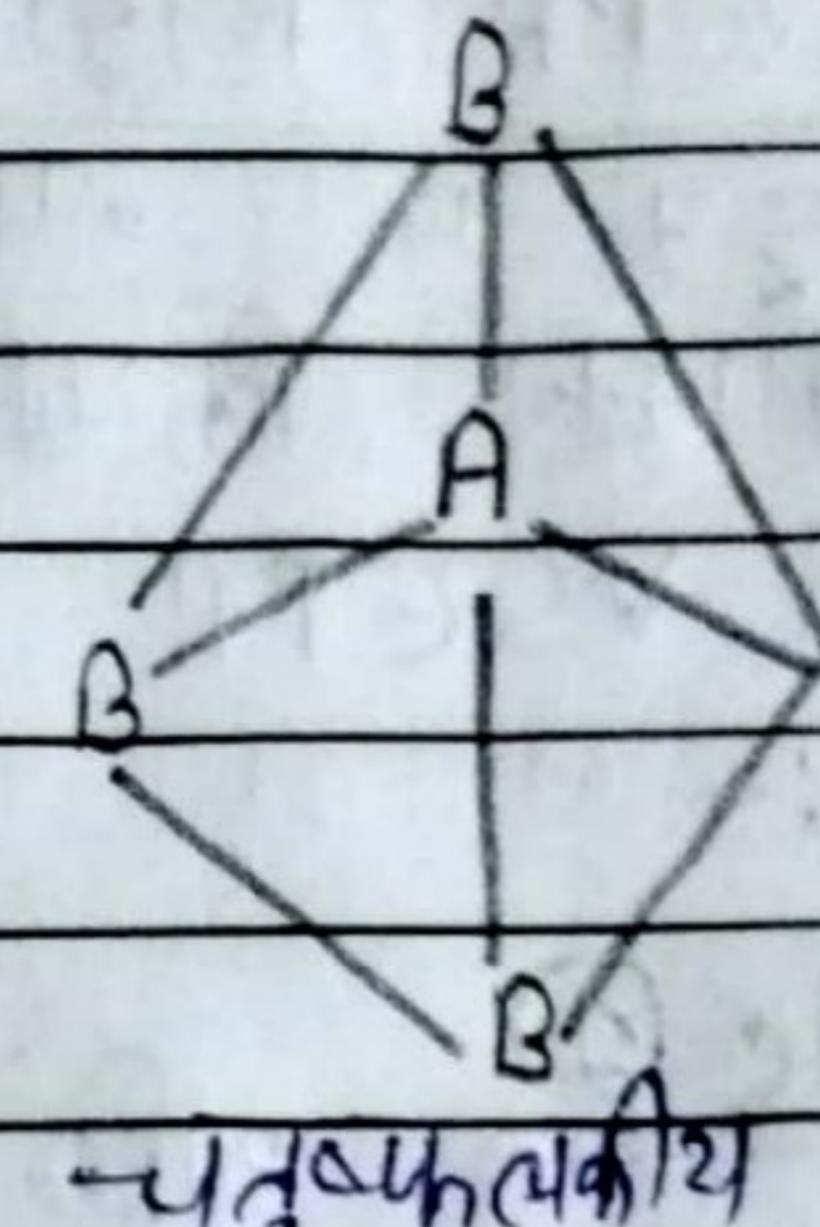
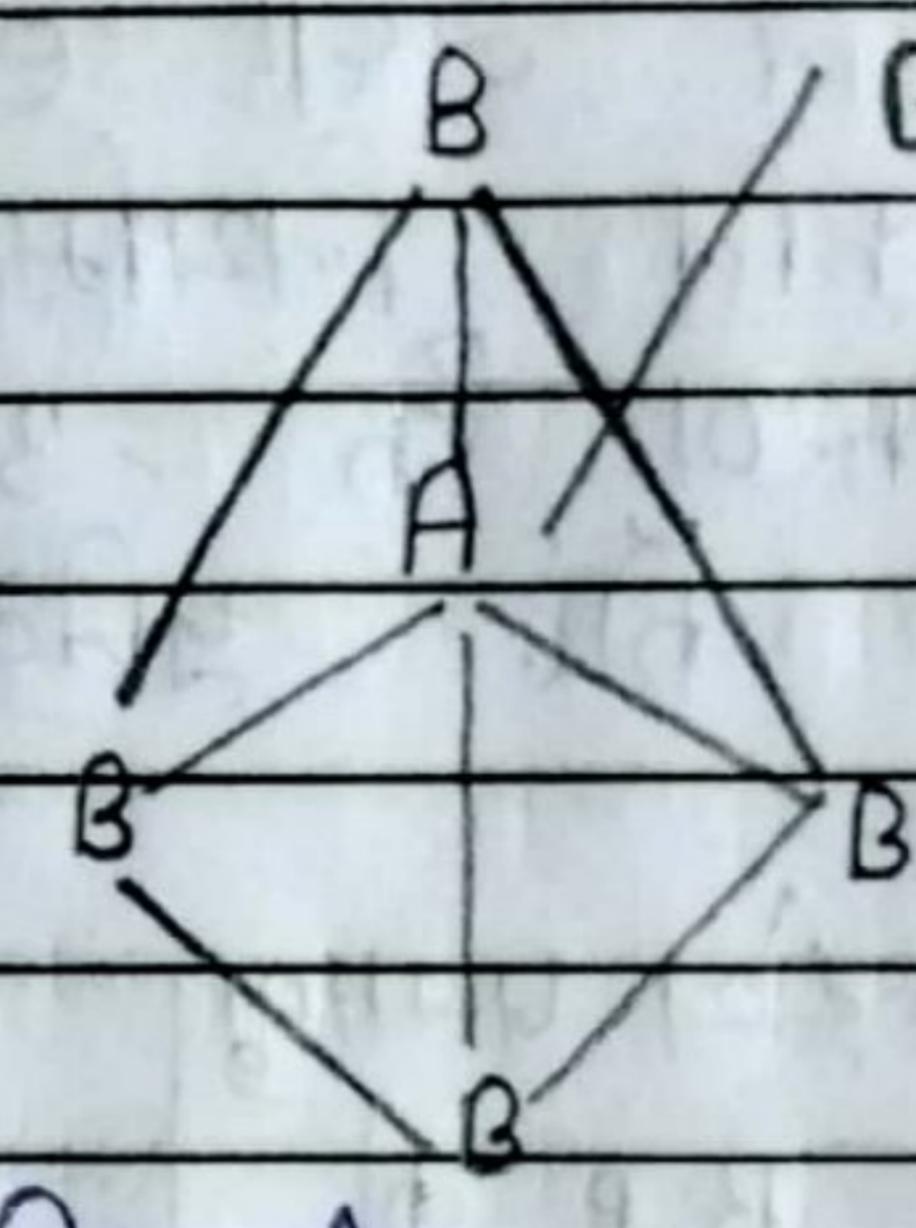
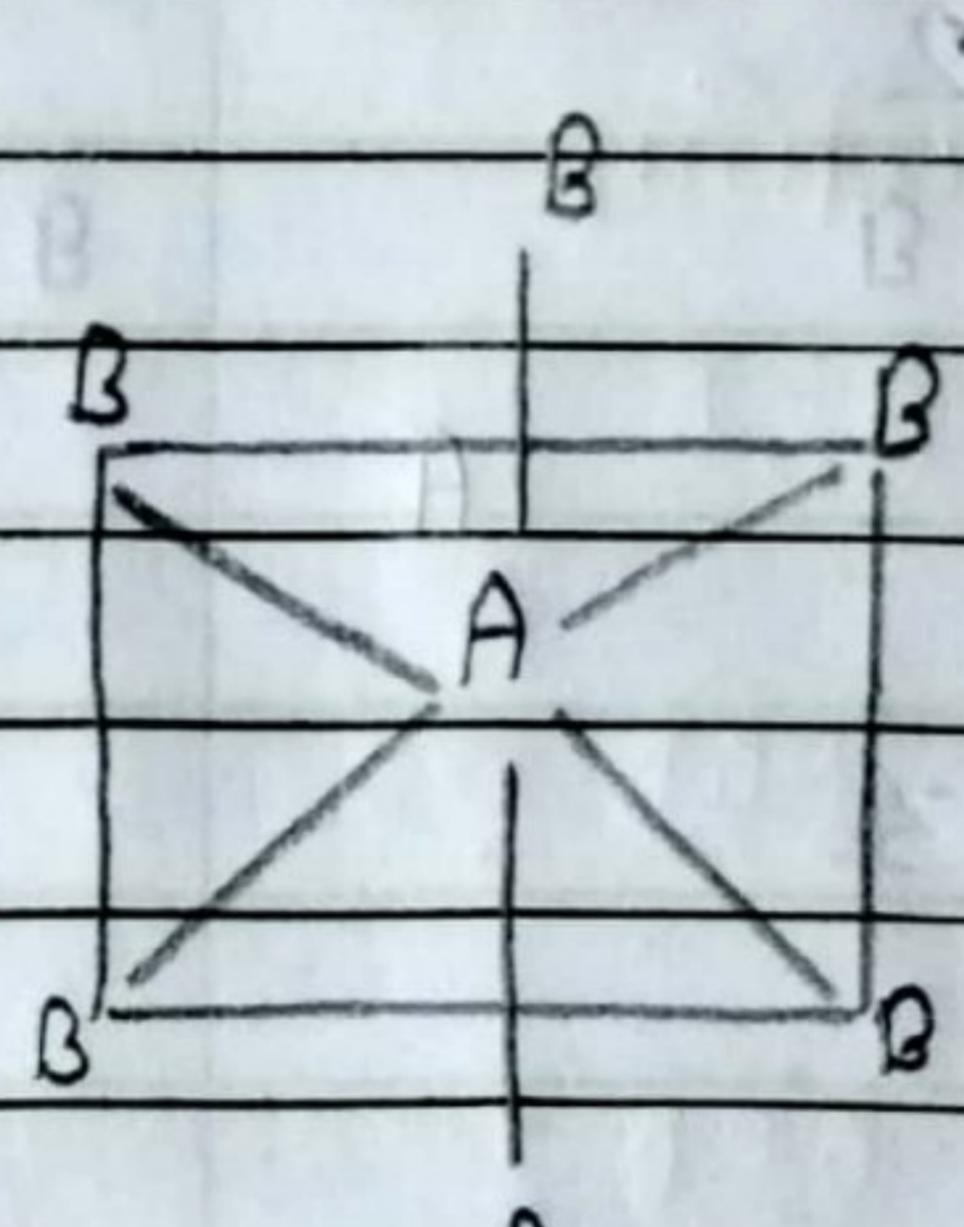
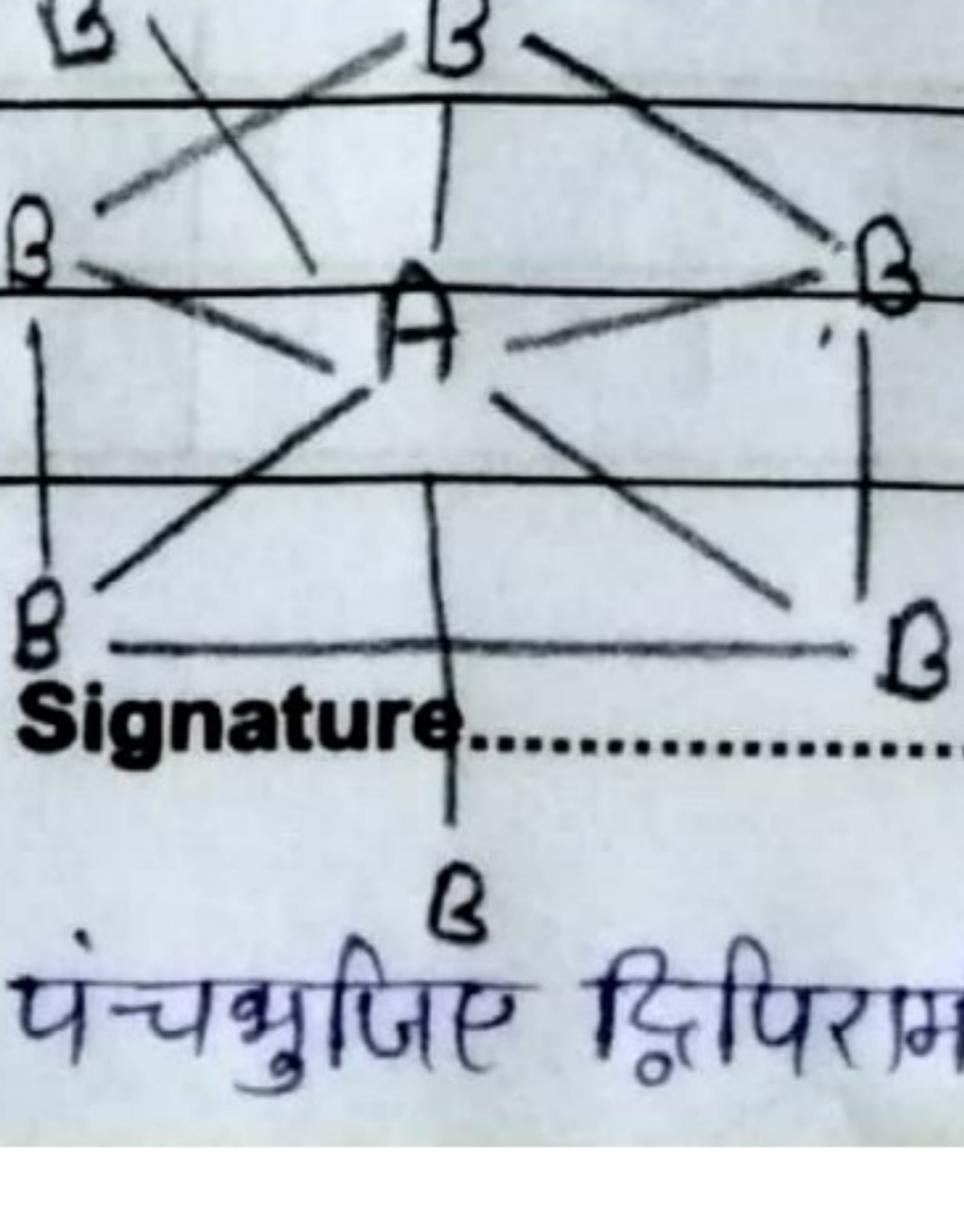
आकृति = रैखीय

वृद्धिकोण = 180°

(b) VSEPR सिद्धांत क्या है? इस सिद्धांत के विविध नियमों को लिखिए। इस सिद्धांत की सीमाओं के बारे में लिखिए?


उत्तर:- संयोजकता कोश ए-युरम प्रतिकर्षण सिद्धांत :-

सिद्धांत राजविक व पोवेल नामक वैज्ञानिक ने सन् 1940 में अणुओं की आकृति को समझाने के लिए एक सिद्धांत दिया जिसे





VSEPR सिद्धांत कहते हैं।
 → 1957 में नाइट्रोम व गॉलेस्पी ने पुनः संशोधन किया।
 उस VSEPR सिद्धांत के मुख्य विन्दु निम्नलिखित हैं:-

Rule ①

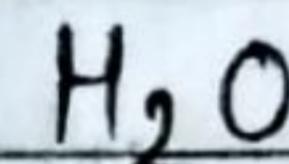
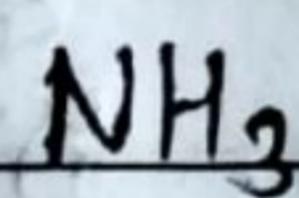
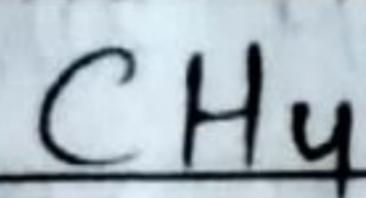
यदि किसी केन्द्रीय परमाणु के पास एकांकी e- युग्म (J.P) उपर्युक्त नहीं है तो केवल बैंधी e- युग्म (B.P) हो तो योगिक की आकृति नियमित होती है क्योंकि अधीक्ष आकृति संकरण के अनुसार होती है क्योंकि B.P - B.P में कोई प्रतिकर्षण नहीं होता है।

क्र.सं.	केन्द्रीय परमाणु पर B.P की संरचना	संकरण	बंधकोण	आकृति	उदाहरण
1.	2	SP	180°	B - A - B रेखीय	BeCl ₂ , BeBr ₂ , BeH ₂ , ZnCl ₂
2.	3	SP ²	120°	 समतल त्रिक्षणीय	BF ₃ , BH ₃ , BCl ₃ , AlCl ₃

Teacher's Signature.....

3.	4	SP^3	109.28° आर्ड्रिटिकल		CH_4 , CO_2 , $SnCl_4$, $SiCl_4$
4.	5	SP^3d	90° और 120°		PCl_5 , PF_5
5.	6	SP^3d^2	90°		SF_6
6.	7	SP^3d^3	180° , 90° , 70°		IF_7

Teacher's Signature




Rule ②

यदि किसी यौगिक में कब्दी युग्म (B.P) के साथ-साथ अक्षीय युग्म (J.P) आ जाते हैं तो प्रतिकर्धण के कारण आकृति में विकृति आ जाती है अर्थात् आकृति अनियमित हो जाती है।

→ J.P व B.P में प्रतिकर्धण का क्रम-

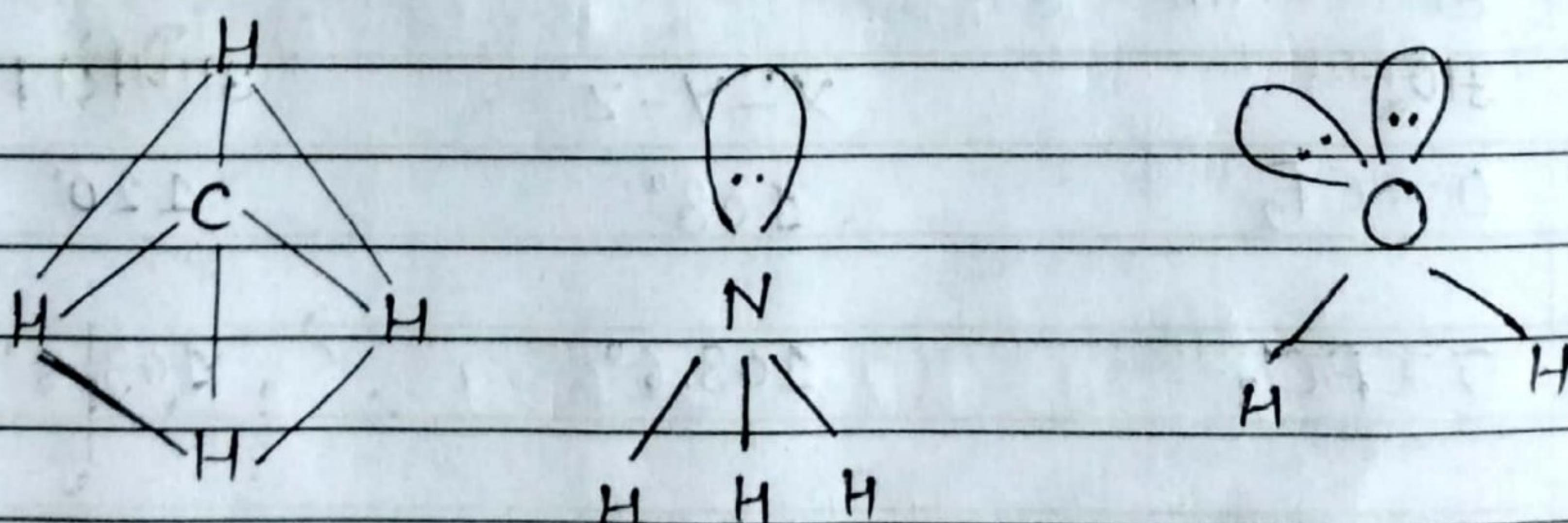
$$J.P - J.P > J.P - B.P > B.P - B.P$$

Eg:-

संकरण

 SP^3

बंधकोण


 $109^\circ 28' A$ SP^3 107° SP^3 104°

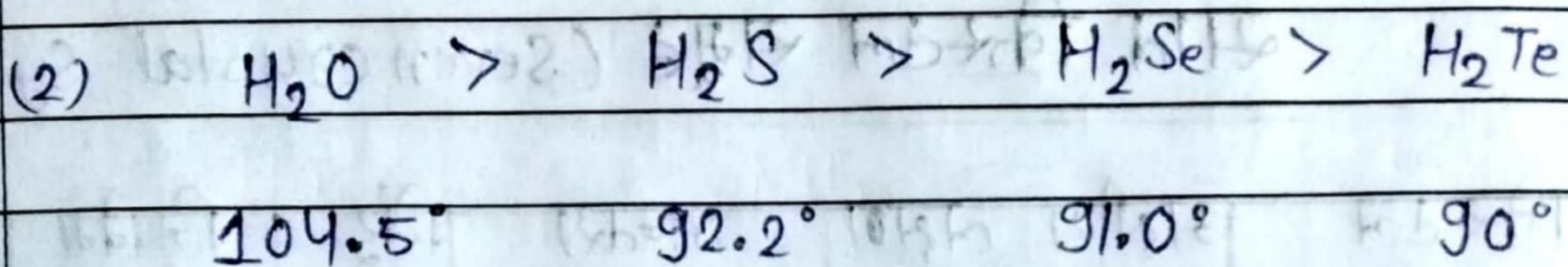
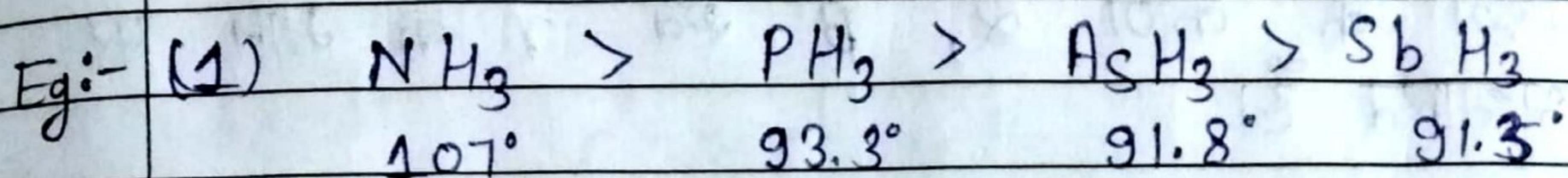
No of J.P

आकृति

चतुर्षिफलकीय

पिरामीटिय

V-² आकृतिRule ③



केन्द्रिय धातु परमाणु से जुड़े हुए परमाणुओं की विद्युत गतिशीलता बढ़ने पर इनके बंधकोण का मान कम हो जाता है।

Teacher's Signature.....

Eg:-	(1) $H_2O > F_2O$ 104° 103.2°	
	(2) $NH_3 > NF_3$ 107° 102°	
	(3) $PI_3 > PB_3$ 120° 101.5°	
	<u>Rule ④</u> डिवन्ध के दो e- युग्म या त्रिवन्ध के तीन e- युग्मों में से एकल बन्ध के एक e- युग्म की अपैष्टा अधिक स्थान द्वारा दूरते हैं इसलिए संयोजकता कोश में उपर्युक्त अन्य e- युग्मों पर अधिक प्रतिकर्षण द्वारा दूरते हैं इससे बन्धकोण के मान में कमी हो जाती है।	
Eg:-	CO $X-Y-Z$ आपेक्षित मान $O=CF_2$ 108° 120°	
	$O=PCl_3$ 103.6° 109.5°	
	$O=Sf_4$ 115° 120°	
	$S=C(NH_4)_2$ 116° 120°	

Rule (5)

द्वितीय आवर्त के e- युग्मों के मध्य पृतिकर्षण तृतीय तथा बाद के आवर्त के सदस्यों में e- युग्म के मध्य पृतिकर्षण से अधिक होता है इस कारण बन्धकों का मान कम हो जाता है।

VSEPR सिद्धांत की सीमाएँ :-

इस सिद्धांत की मुख्य

असफलताएँ निम्न हैं :-

1. अत्यधिक धुवीय अणुओं की आकृति की व्याख्या नहीं की जा सकती।
2. यह सिद्धांत विस्थानीकृत तथा इलेक्ट्रॉन युक्त अणुओं की संस्थाना नहीं समझा सकता।
3. संकुमण धातु संकुलों की आकृति की व्याख्या करने में भी यह सिद्धांत असफल रहा है।
4. अधिक इलेक्ट्रॉन युग्म वाले तत्वों (IIIA-VA के अन्तिम सदस्य) के चौरिकों की आकृति की व्याख्या भी इस सिद्धांत द्वारा नहीं की जा सकती है।

प्रश्न 3.

(9) सात क्रिस्टल समूह को बताए?

उत्तर:-

सात क्रिस्टल समूह :-

क्रिस्टल वैज्ञानिकों ने 32 विंदे समूहों तथा 14 त्रिविम जालकों को सात क्रिस्टल समुदाय में वर्गीकृत किया। यह वर्गीकरण क्रिस्टल के तीनों क्रिस्टलोग्राफिक अक्षों की लंबवाई तथा उनके मध्य के कोण α , β एवं γ के मान पर आधारित है।

सात क्रिस्टल समूह (Seven crystal System)

S.क्र.	क्रिस्टल समूह	अक्षीय लक्षण	अन्तरा अक्षीय कोण	विंदे समूह	त्रिविम जालकों की संख्या व्रेत्रीज	उदाहरण
1.	घनीय (Cubic)	$a = b = c$	$\alpha = \beta = \gamma = 90^\circ$	5	3	$\text{NaCl}, \text{KCl}, \text{CaF}_2, \text{टीरा}, \text{ZnS}, \text{Pb}, \text{Hg}, \text{Au}, \text{Ag}$
2.	वर्तुलकोणीय या द्विमत्वात् (Tetragonal)	$a = b \neq c$	$\alpha = \beta = \gamma = 90^\circ$	7	2	$\text{TiO}_2, \text{Sn}, \text{SnO}_2, \text{चुरीमा}$
3.	समवर्तुलकोणीय विषमत्वात् (Orthorhombic)	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^\circ$	3	4	$\text{BaSO}_4, \text{PbCO}_3, \text{KNO}_3, \text{I}_2$

Teacher's Signature.....

२- जायक
विषमत्वात् गंधा

4.	एकनतात्र (Monoclinic)	$a \neq b \neq c$	$\alpha = \gamma = 90^\circ$ $\beta \neq 90^\circ$	3	2	CaSO_4 , β -गंधक, एकनतात्र गंधक
5.	त्रिनतात्र (Triclinic)	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma$ $\neq 90^\circ$	2	1	CuSO_4 , $\text{K}_2\text{Cr}_2\text{O}_7$, H_3BO_3
6.	षटकोणीय (Hexagonal)	$a = b \neq c$	$\alpha = \beta = 90^\circ$ $\gamma = 120^\circ$	7	1	ग्लूफाइट, Zn , Cd , ZnO , CdS
7.	त्रिकोणीय / त्रिसमनतात्र (Trigonal / Rhombohedral)	$a = b = c$	$\alpha = \beta = 90^\circ$ $\gamma \neq 90^\circ$	5	1	ब्वाटर्सी, केल्बसाइट, (CaCO_3)
	कुल			32	14	NaNO_3 , HgS

(b) क्रिस्टलीय और अक्रिस्टलीय ढोस में क्या अन्तर है
समझाइए ?

उत्तर :- क्रिस्टलीय ढोस :-

वह ढोस जिनकी निश्चित ज्यामिति
होती है तथा इनका आकार निश्चित होता है क्रिस्टलीय
ढोस कहलाते हैं।

→ म-किरण विवरण द्वारा अव्ययन से ज्ञात किया गया कि
क्रिस्टलीय ढोस में अवयवी कों कणों की एक नियमित
व्यवरचित संरचना होती है जो कि सभी दिशाओं में
समान होती है।

→ क्रिस्टलीय ढोसों की वास्तविक ढोस माना जाता है।

→ क्रिस्टलीय ढोरों में कठोरता, हुक्ता, अस्मपीडियता आदि गुण पाए जाते हैं।

Eg:- KCl, NaCl, Na_2SO_4 , गंधक, शबकर

अक्रिस्टलीय ढोरः:-

ऐसे ढोर पदार्थ जिनकी निश्चित ज्यामिति नहीं पायी जाती है तथा इनमें अवयवी कोंडों की कोई निश्चित व्यक्ति नहीं होती है। यह पदार्थ अक्रिस्टलीय ढोर पदार्थ कहलाते हैं।

→ यह कण उसी प्रकार से उपरिचित होते हैं जिस प्रकार इनमें पाए जाते हैं अतः इन ढोरों को अधिक श्यानता वाले अधिशीतित हुव (Copper coated) माना जाता है।

→ यह ढोर अस्मपीडिय, कठोर होते हैं।

→ इन्हे वास्तविक ढोर नहीं माना गया है।

Eg:- स्लार्टक, रबर, काच, रोल, रेजिन etc.

क्रिस्टलीय व अक्रिस्टलीय ढोरों में अन्तर :-

क्रिस्टलीय ढोर

→ इनकी ज्यामिति निश्चित होती है।

→ अवयवी कोंडों की व्यक्तित्व संरचना होती है।

→ यह वास्तविक ढोर होते हैं।

→ इनका गलनांक निश्चित होता है।

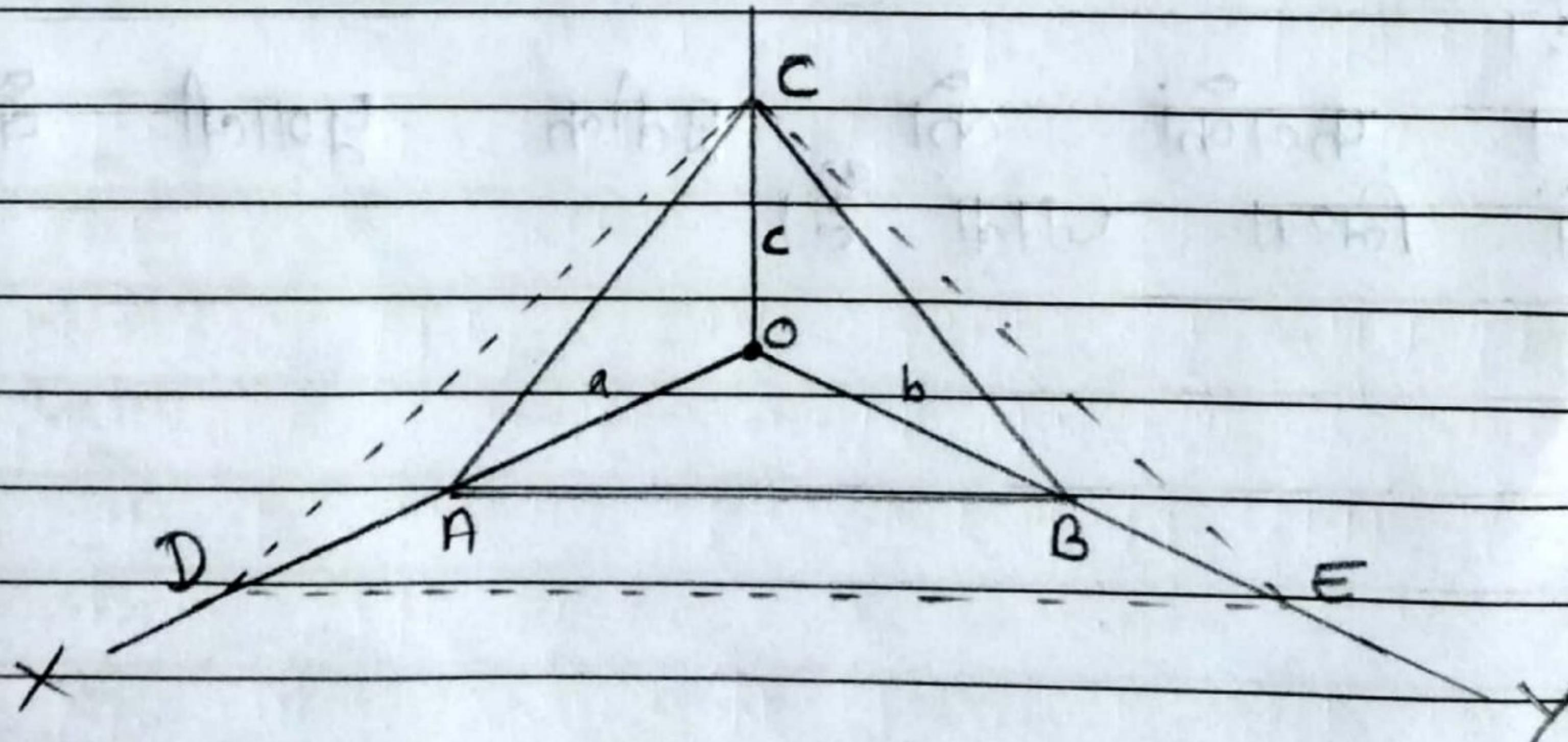
अक्रिस्टलीय ढोर

→ इनकी ज्यामिति निश्चित नहीं होती है।

→ अवयवी कोंडों की व्यक्तित्व संरचना नहीं होती है।

→ यह आमासी ढोर होते हैं।

→ इनका गलनांक अनिश्चित होता है।


→	यह विषमदैशिक प्रकृति के होते हैं।	→ यह समदैशिक प्रकृति के होते हैं।
→	इनका शीतलन वक्त असाध होता है।	→ इनका शीतलन वक्त सतत होता है।
Eg:-	NaCl, KCl, Na_2SO_4 , गंधक, शक्ति	Eg:- लाईटक, रबर, रील शैपिंग etc.

(c) परिमेय घातांक के नियम को परिभ्राष्ट कीजिए?

उत्तर:- परिमेय घातांक का नियम :-

“परिमेय घातांक के नियम के अनुसार सूक्ष्मक्रियाएँ के भिन्न-भिन्न फलकों द्वारा क्रिस्टलोग्राफिक - अङ्ग पूर कराए गए अन्तःखण्ड अनन्त होते हैं या उनके छोटे परिमेय गुणज होते हैं, यह नियम परिमेय घातांक का नियम कहलाता है।”

2

Def:- परिमेय घातांक का नियम

Teacher's Signature.....

→ यदि एकांक फलक A, B, C क्रिस्टलोग्राफिक अज्ञों पर क्रमशः a, b, c अन्तर्खण्ड पर काटता है तो क्रिस्टल का दूसरा फलक क्रमशः la, mb, nc अन्तर्खण्ड काटेगा, l, m, n थों अनें सहित पूर्णक है या पूर्णकों के विभिन्न हैं।

→ माना कि एक अन्य फलक D, E, C है जो क्रिस्टलोग्राफिक अज्ञों को इस प्रकार काटता है कि

$$OD = 2OA = 2a, OE = 2OB = 2b, OC = OC = c$$

चित्र से स्पष्ट है कि फलक D, E, C द्वारा काटे गए अन्तर्खण्ड क्रमशः $2a, 2b, c$ हैं जो कि a, b, c के पूर्ण मुण्ड हैं।

→ किसी क्रिस्टल की ज्यामिति का अध्ययन करने के लिए उसके विभिन्न फलकों की स्थिति उसके द्वारा क्रिस्टलोग्राफिक अज्ञों पर कोई गए अन्तर्खण्डों के रूप में जाती है।

→ यदि कोई फलक किसी अन्तर्खण्ड को द्वारा काटता है तो यह माना जाता है कि फलक उस अन्तर्खण्ड के अनन्त पर काटता है।

→ इन फलकों को प्रतीक प्रणाली के रूप में लिखा जाता है।

प्रश्न-५ (a) क्या होता है रसीदी सॉल में विद्युत अपघट्य मिलाया जाता है?

उत्तर:- जब रसीदी सॉल में विद्युत अपघट्य मिलाया जाता है तो यह विद्युत अपघट्य संकेन्द्रिय का कार्य करता है इसके परिणामस्वरूप रसीदी के सॉल का संकेन्द्रिय हो जाता है जो रसीदी सॉल को लाल रंग से नीले रंग में बदल देता है।

(b) क्या होता है जब रस्तोहल मिलाने पर नमक के जलीय विलयन का रंग दृष्टिया हो जाता है।

उत्तर:- जब नमक के जलीय विलयन में रस्तोहल मिलाया जाता है तो यह जल रस्तोहल में बुल जाता है जबकि नमक रस्तोहल में नहीं छुलता है इस कारण रस्तोहल में नमक का कोलोयडी विलयन बन जाता है रस्तोहल का विलयन का रंग दृष्टिया हो जाता है।

(c) कौटे हुए स्थान पर बहते हुए रक्त को रोकने के लिए $FeCl_3$ का विलयन लगाया जाता है क्यों?

उत्तर:- कौटे हुए स्थान पर बहते हुए रक्त को रोकने के लिए $FeCl_3$ का विलयन लगाया जाता है क्योंकि रक्त एक कोलोयडी विलयन है जिस कारण चौट लगाने पर शरीर के

किसी भी मांग से बहुत हुए रक्त को
 रोकने के लिए उस पर $FeCl_3$ का
 विलयन डाल दिया जाए तो $FeCl_3$ के
 आयनों के साथ रक्त के कोलोयडी का
 स्थिरित हो जाते हैं और रक्त का
 थका बन जाता है जिससे रक्त का
 पुराह रुक जाता है इसलिए कटे हुए
 स्थान पर $FeCl_3$ का उपयोग किया
 जाता है।

Teacher's Signature.....