

R-C परिपथ वित्र

बैटरी
 मिली अमीटर
 वोल्ट मीटर
 कॉम्पैक्टर
 प्रतिरोध
 कुटी

प्रयोग - 4

उद्देश्य :-

निपत विं १०० व० की बैटरी (दिए थे व्यारा स्टोर) का उपयोग करते हुए अनेक समय निपतांक के R-C परिपथों में आवेश तथा व्यारा के समय के साथ परिवर्तन का अध्ययन करना।

उपकरण :-

अग्नि मान के उत्तरीय, अग्नि व्यारिता के संधारित्र, मिली अग्नीटर, वॉल्टमीटर, कुंजी, बैटरी, विशाल घड़ी आदि।

सिद्धान्त :-

(i) संधारित्र का आवेशन :-

जब कुंजी K को दबाया जाता है तो उत्तरीय R, संधारित्र C, तथा बैटरी E त्रैणीबुम में जुड़ जाते हैं और हण्डीकु समय के लिए व्यारा उवाहित होती है जो संधारित्र का आवेशन कर देती है। माना किसी दृष्टि अर्थात् समय t पर उत्तरीय R में से इच्छारा उवाहित होकर संधारित्र में Q आवेश संकेत हो जाता है तो संधारित्र पर $\frac{Q}{C}$ विभवान्तर उत्पन्न हो जाता है।

इसलिए समय t पर

$$\begin{aligned} \text{कुल विभवान्तर } E &= V_R + V_C \\ &= IR + \frac{Q}{C} \end{aligned}$$

संधारित्र में महत्तम आवेश Q, संकेत होने की स्थिति में उस पर विभवान्तर आरोपित विभवान्तर के तुल्य हो जाता है तथा व्यारा I मान क्षुन्य हो जाता है।

$$\therefore E = \frac{Q}{C}$$

Teacher's Signature:

$$\frac{Q_0}{C} = \frac{Q}{C} + IR$$

$$\frac{Q_0 - Q}{C} = R \frac{dQ}{dt}$$

समाकलन करके हल भरने पर

$$Q = Q_0(1 - e^{-t/RC})$$

$$\left[\because I = \frac{dQ}{dt} \right]$$

पहली भरण संधारित्र पर आवेश के वरदांगनी वृद्धि को व्यक्त करता है। प्रायोगिक कप से इकामान संधारित्र के सिरे पर विभवान्तर नाप कर जाता किया जा सकता है।

संधारित्र के सिरे पर विभवान्तर $V_C = \frac{Q}{C}$ नियतांक RC परिपथ का समय नियतांक कदमागत व इस τ_C से निकापित होता है। यदि $t = \tau_C = RC$ ले तो $Q = 0.63 Q_0$ होता है। अतः समय नियतांक के तुल्य समय में संधारित्र का आवेश शून्य से वृद्धि कर महत्वमान भा $(1 - 1/e)$ अर्थात् 63% हो जाता है।

~~$$\therefore \frac{dQ}{dt} \propto \frac{1}{\tau_C}$$~~

अर्थात् RC परिपथ में समय नियतांक τ_C का मत जितना अधिक होगा, संधारित्र में आवेशन भी हर उतनी दी बहुती है अर्थात् आवेशन उतना ही हैर से होता है।

व्यारा क्षय:-

संधारित्र को आवैशित भरते समय व्यारा का मान -

$$I = \frac{dQ}{dt} = \frac{Q_0}{RC} e^{-t/RC} = I_0 e^{-t/RC}$$

उपरोक्त समीक्षण के स्पष्ट है कि संधारित्र का आवेशन भरते समय व्यारा का मान वरदांगनी का कम होता है। समय नियतांक के तुल्य समय में व्यारा का मान महत्वमान I_0 का 37% बह जाता है। $(1/e)$

Teacher's Signature: _____

संव्याहित का निरौपेशन :-

अब पहिले K_1 की को छोड़कर K_2 को दिया जाता है तो बैटरी परिपथ से अलग हो जाती है और संव्याहित का अनोवेशन प्रतिरोध R में से होता है। तारम्भ में $V_c = E$ व संव्याहित पर ओवेश $Q = Q_0 = E_c$ होता है। पूर्ण अनोवेशन की स्थिति में $E = 0$ होता है अतः अनोवेशन में $C = 0$ पर $Q = Q_0 = E_c$ अतः

$$V_R + V_c = 0 \quad \text{या} \quad IR + \frac{Q}{C} = 0$$

$$I = \frac{dQ}{dt} = -\frac{1}{RC} Q$$

$$\frac{dQ}{dt} = -\frac{1}{RC} Q$$

प्रथम कालन से

$$Q = Q_0 e^{-t/RC}$$

अनोवेशन की स्थिति में संव्याहित में से ओवेश वरधातांकी रूप से कम होता है।

इस स्थिति में $t = \infty$ पर ओवेश का मान महत्वमपन्न का अर्थात् 37% रह जाता है। संव्याहित के अनोवेशन के कारण प्रतिरोध R में से उत्पादित व्यापा

$$I = \frac{dQ}{dt} = -\frac{Q_0}{RC} e^{-t/RC} = -I_0 e^{-t/RC}$$

अर्थात् परिपथ में व्यापा वरधातांकी रूप से धटकी हुई अतिकृत उस दिशा में उत्पादित होती है जिससे फलस्वरूप संव्याहित पर ओवेश का मान शुन्य से भाँति।

Teacher's Signature: _____

4

RC-DC

y ↑

65×10^{-3}

60×10^{-3}

55×10^{-3}

50×10^{-3}

45×10^{-3}

35×10^{-3}

30×10^{-3}

25×10^{-3}

20×10^{-3}

15×10^{-3}

10×10^{-3}

5×10^{-3}

(Q)

(S)

(E)

(L)

(C)

(R)

(A)

(B)

(D)

(P)

(M)

(N)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

(U)

(V)

(W)

(X)

(Y)

(Z)

क्रेस्ट भारती → संचारिक का आवेदन

क्र. सं.

$$R = 50 \text{ K}\Omega, C = 1000 \text{ }\mu\text{F},$$

$$RC = 50 \text{ मिनीट}$$

$$\text{समय } (t) \text{ मिनीट} \quad V_c \text{ (वोल्ट)} \quad \text{आवेदन } \alpha = \frac{CV_c}{\text{कुलाम}}$$

1.	0 Sec	8 0 volt	0 कुलाम
2.	10 Sec	14 8 volt	8×10^{-3} कुलाम
3.	20 Sec	18 14 volt	14×10^{-3} कुलाम
4.	30 Sec	22 18 volt	18×10^{-3} कुलाम
5.	40 Sec	26 22 volt	22×10^{-3} कुलाम
6.	50 Sec	28 26 volt	26×10^{-3} कुलाम
7.	60 Sec	36 28 volt	28×10^{-3} कुलाम
8.	70 Sec	32 30 volt	30×10^{-3} कुलाम
9.	80 Sec	34 32 volt	32×10^{-3} कुलाम
10.	90 Sec	36 34 volt	34×10^{-3} कुलाम
11.	100 Sec	38 36 volt	36×10^{-3} कुलाम
12.	110 Sec	38 volt	38×10^{-3} कुलाम

अधिकारी →

$$t = \tau_c = RC$$

$$\alpha = \alpha_0 0.63$$

$$= 0.63 \times 38 \times 10^{-3}$$

$$= 23.94 \times 10^{-3} \text{ कुलाम}$$

Teacher's Signature: _____

संचारित वा अनावेशन \rightarrow

$$R = 50 \text{ k}\Omega, \quad C = 1000 \text{ MF}$$

$$\text{समय विपर्यंक} (\tau) = RC = 50 \times 10^{-3} \times 1000 \times 10^{-6} = 50 \text{ sec}$$

सं स०	समय (sec)	V_C (वोल्ट)	आवेश (Q) (कूलॉम)
1.	0 sec	40 volt full.	full
2.	10 sec	32 volt	32×10^{-3} कूलॉम
3.	20 sec	28 volt	32×10^{-3} "
4.	30 sec	24 volt	28×10^{-3} "
5.	40 sec	20 volt	24×10^{-3} "
6.	50 sec	18 volt	20×10^{-3} कूलॉम
7.	60 sec	16 volt	18×10^{-3} "
8.	70 sec	14 volt	16×10^{-3} "
9.	80 sec	12 volt	14×10^{-3} "
10.	90 sec	10 volt	12×10^{-3} कूलॉम
11.	100 sec	8 volt	10×10^{-3} "
12.	110 sec		8×10^{-3} "

प्र० ०१ (a) \rightarrow

1) यद्यपि RC के मान के लिए ओवेश को १२ अ०४९ मा०मा० दो अ०४९ पर ले कर ग्राफ बिखरे हैं।
 २.) ओवेशन की स्थिति में १०८ आलैब से १ के अधिकतम मान के ०.६३ मान के संगत समय का मान या कालांक (समय निपत्तांक)

$$T_0 = 44 \text{ sec}$$

३.) ओवेशन की स्थिति में १०८ आलैब से १ के अधिकतम मान के ०.६७ के संगत समय का मान (समय निपत्तांक)

$$T_0 = 44 \text{ sec}$$

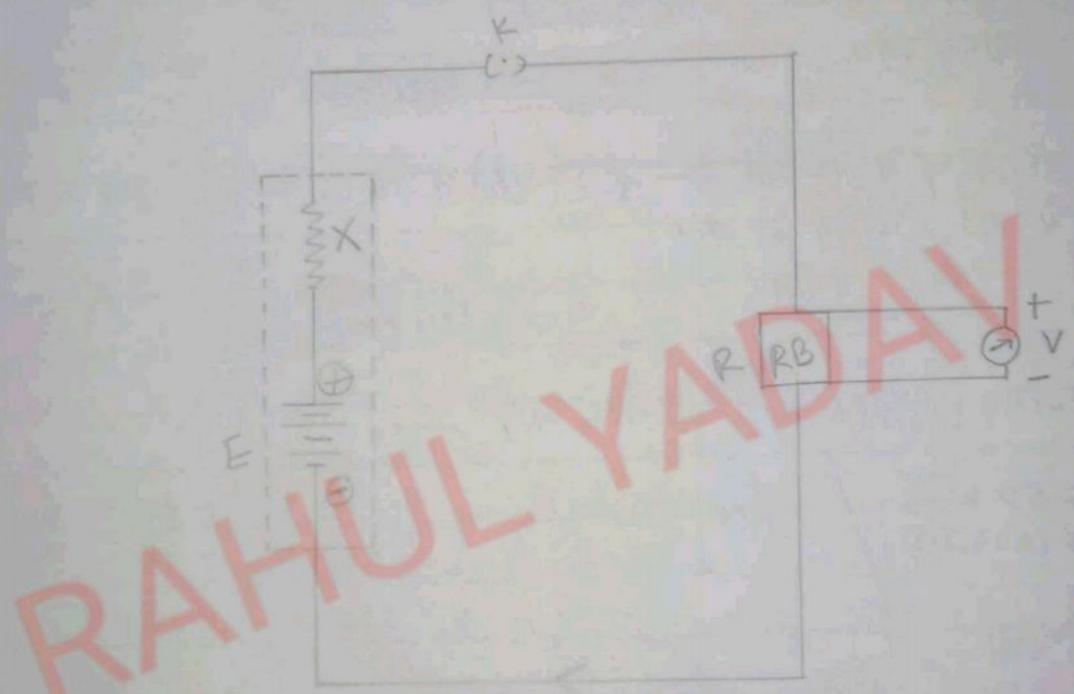
४) समय निपत्तांक का सैद्धान्तिक मान —

$$R = 50 \text{ k}\Omega \quad C = 1000 \text{ nF} \quad T_0 = RC = 50 \times 1000 \times 1000 \times 10^{-9} \text{ sec} = 50 \text{ sec}$$

परिणाम \rightarrow

A) ओवेश १०८ का मान समय T_0 के सापेक्ष परिवर्तन वरधाता है। यहार के होते हैं।

B) RC का मान बढ़ने से समय निपत्तांक बढ़ता है तथा ओवेशन के अवेशन की दर भी घटती है।


C) समय निपत्तांक का अधिकारीक मान

$$T_0 = 44 \text{ sec}$$

D) समय निपत्तांक का सैद्धान्तिक मान

$$T_0 = 50 \text{ sec}$$

Teacher's Signature: _____

आधिकारिक शान्ति संघरण फ्रेयर

उद्देश्य :-

ज्ञात आन्तरिक उत्तिरोध के द्वारा स्रोत से विना लोड उत्तिरोध को प्रकृत शक्ति के परिवर्तन का अध्ययन करना तथा आधिकृतम शक्ति संधरण उमेय द्वा अध्ययन करना।

उपकरण :-

ज्ञात आन्तरिक उत्तिरोध का द्वारा स्रोत, लग कुंजी वोल्ट-मीटर, उत्तिरोध बॉर्ड, संयोजक तंत्र आदि।

सिद्धान्त :-

पूर्ण E विद्युत वाहक बल के द्वारा स्रोत का आन्तरिक उत्तिरोध X है और परिवर्तित लोड उत्तिरोध R है तो परिपथ में व्याप्ति

$$I = \frac{E}{X+R}$$

तथा उत्तिरोध R के बिन्दु के मध्य विभवान्तर

$$V = IR = \frac{ER}{X+R}$$

\therefore लोड नी वी गई शक्ति \rightarrow

$$P = I^2 R = \frac{E^2 R}{(X+R)^2}$$

P का मान \max होने नी स्थिति में

$$\frac{dP}{dR} = 0$$

$$\frac{dP}{dR} = E^2 \left[\frac{-2R}{(X+R)^3} + \frac{1}{(X+R)^2} \right]$$

Teacher's Signature: _____

प्रतिवर्षीय -

$$X - 318143 \text{ का } 0.95 = 50$$

$$Y - 318143 \text{ का } 0.05 = 0.0520$$

0.0790

0.0770

0.0750

0.0730

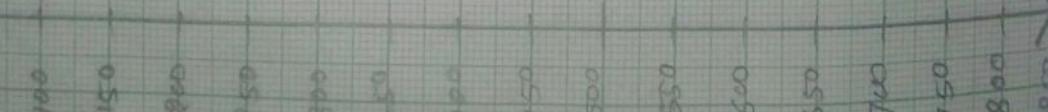
0.0710

0.0690

0.0670

0.0650

0.0630


0.0610

0.0590

0.0570

X

Y

Resistant (R) →

$$\frac{dP}{dR} = E^2 \frac{(X-R)}{(X+R)^3} = 0$$

$$[R = X]$$

दिए व्याराके क्लौर से किछी लोड उत्तिरोध के प्रबन्ध की गई शक्ति का मान लोड पर निर्भर भरता है तथा पृथक उस अवस्था में $m \propto$ होता है जब लोड का उत्तिरोध क्लौर के आन्तरिक उत्तिरोध के बराबर होता है इस अवस्था में लोड स्टेमेलिंग लोड कहलाता है।

अब: यदि प्रबन्ध की गई शक्ति और उत्तिरोध में ग्राफ बिल्कुल जोपै तो आपूर्व के उद्दिष्ट के संगत उत्तिरोध का मान R आन्तरिक उत्तिरोध X के बराबर होता है अतः

$$[X = R]$$

प्रैक्टिकल लाई

प्रैक्टिकल लाई (R) Ω	प्रतिवर्तन (v) (वोल्ट)	शक्ति P = V^2/R (वाट)
1. 100 Ω		
2. 200 Ω	3.4 Volt	0.0578 वाट
3. 300 Ω	4.5 Volt	0.0675 "
4. 400 Ω	5.3 Volt	0.0702 "
5. 500 Ω	6 Volt	0.0720 वाट
6. 600 Ω	6.5 Volt	0.0704 "
7. 700 Ω	7 Volt	0.0700 "
8. 800 Ω	7.4 Volt	0.0684 "
9.		
10.		

Teacher's Signature:

प्र० १ -

$$\text{दिए थारा स्टोर का आन्तरिक उत्तिवोध } X = 500 \text{ ₹} \\ \text{वोल्टमीटर का अल्पतमांक} = \frac{500 \text{ ₹}}{\text{वोल्ट}}$$

प्र० २ -

शास्ति P और लोड उत्तिवोध R के बीच ग्राफ में उत्तिवाप्त
 $R = 500$ ओम पर उत्पाद होता है तथा अधिकतम शास्ति .

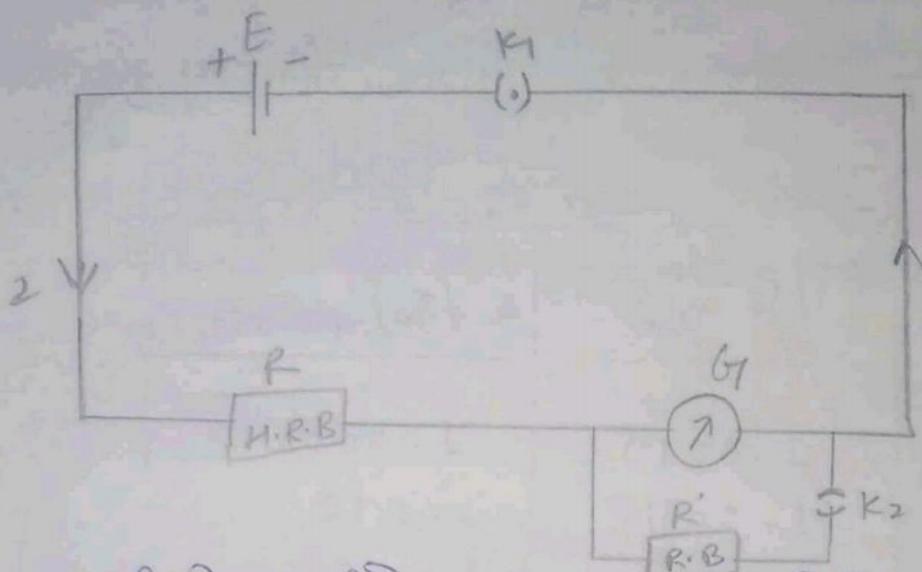
$$P = 0.072 \text{ वाट}$$

\therefore विद्युत स्टोर का आन्तरिक उत्तिवोध $X = 500 \text{ ₹}$

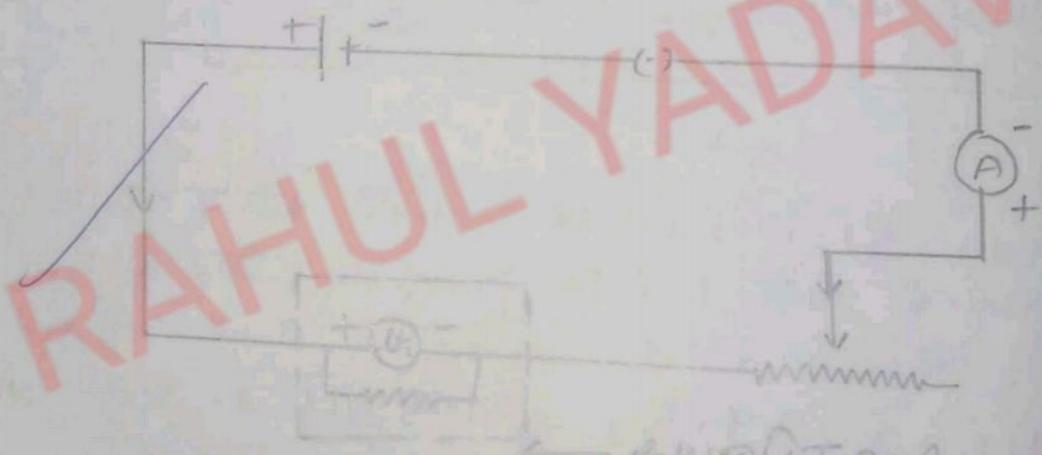
इसी $R_0 = X$ आर, अधिकतम शास्ति संवरण उमेप सत्यापित होता है।

परिणाम :-

अधिकतम शास्ति संवरण के लिए लोड $R_0 = 500 \text{ ₹}$ जो प्राप्तिगति त्रुटि की लीमा में स्टोर के आन्तरिक उत्तिवोध $X = 500 \text{ ₹}$ के कराबर है। इससे अधिकतम शास्ति संवरण उमेप का सत्यापन होता है।


सावधानिया →

१) विश्वान्तर V का मापन योग्य यथाविधि से किया जाना चाहिए और इसके लिए वोल्टमीटर का अल्पतमांक लंघु होना चाहिए।


२) अत्यन्त आन्तरिक उत्तिवोध के स्टोर के लिए पहली मान्यता ही है।

21/12/18

Teacher's Signature: _____

वित्रः - अद्वितीय विद्युति द्वारा इन के मान व्यापार करने के लिए पारिपथ

वित्रः - क्रपान्तरित असीटर के अशाक्त के लिए पारिपथ वित्र -

उद्देश्य :-

जिसी दिर गर व्यारामापी को दी गई परास के अभीतर में कपान्तरित करना तथा उसका अव्याख्य करना।

उपकरण :- दिया गया व्यारामापी, एक संयोग स्कैल, एक उच्च उत्तिरोध बॉक्स, अन्य उत्तिरोध बॉक्स, व्यारामिंग्रेज, दो कुंजी आदि।

सिद्धान्त :- यदि माना जिस व्यारामापी को अभीतर में कपान्तरित करना है उसका उत्तिरोध जहू है। व्यारामापी में पूर्ण स्कैल पर विद्युप के लिए व्यारा i_g है। यदि व्यारामापी वो I A भापने पौर्ण अभीतर में बदलना है तो व्यारामापी के बाहर अम ने s उत्तिरोध का बांट जोड़ जाता है जिससे व्यारामापी के कुल व्यारा i_g प्रवाहित हो रहा शेष व्यारा $(I - i_g)$ बांट में से प्रवाहित हो।

अतः $(I - i_g) s = i_g B$

जिससे $s = \left(\frac{i_g}{I - i_g} \right) B$

यदि $i_g \ll I$ हो गे तो

$$s \approx \frac{i_g}{I} B \approx \frac{B}{n} \quad \left\{ \text{अतः } n = \frac{I}{i_g} \right.$$

व्यारामापी के पूर्ण स्कैल के विद्युप के लिए व्यारामापी के उत्तिरोध व्यारा, i_g है तो

$$i_g = \left(\frac{E}{R + B} \right) \left(\frac{N}{n} \right)$$

जहाँ $E = \text{विद्युप बा. बा.}$
 $n = \text{व्यारामापी में विद्युप}$
 $N = \text{स्कैल का प्रत्यक्ष जिक्का}$
 $B = \text{व्यारामापी का उत्तिरोध}$

Teacher's Signature: _____

माना $E = 2 \text{ volt}$, $N = 50$
 $b_1 = 20 \text{ mm}$

① (i) $i_g = \frac{2 \times 50}{(5000 + 20) \times 36} = \frac{100}{5020 \times 36} = 553.42 \times 10^{-6} \text{ A}$

(ii) $i_g = \frac{2 \times 50}{5520 \times 32} = \frac{100}{5520 \times 32} = 566.12 \times 10^{-6} \text{ A}$

(iii) $i_g = \frac{2 \times 50}{(5900 + 20) \times 30} = \frac{100}{5920 \times 30} = 563.06 \times 10^{-6} \text{ A}$

(iv) $i_g = \frac{2 \times 50}{(6400 + 20) \times 28} = \frac{100}{6420 \times 28} = 556.29 \times 10^{-6} \text{ A}$

मात्रा $i_g = \frac{553.42 + 566.12 + 563.06 + 556.29}{4} \times 10^{-6} \text{ A}$

~~RAHUL YADAV~~
 $= 559.72 \times 10^{-6} \text{ A}$

② $S = \frac{i_g \times b_1}{I - i_g}$ माना व्यारामापी के परास के अभीटर में कपान्तरित करना है।

$$\begin{aligned}
 S &= \frac{559.72 \times 10^{-6} \times 20}{1.5 - 559.72 \times 10^{-6}} \\
 &\approx \frac{559.72 \times 20 \times 10^{-6}}{1.5} = \frac{11194.4 \times 10^{-6}}{1.5} \\
 &= 7462.93 \times 10^{-6} = 0.0074 \Omega
 \end{aligned}$$

यदि शर्ट की वांछित लम्बाई l है, शर्ट तार की लम्बाई s है तथा σ उसके पदार्थ का विशिष्ट उत्तिरोध है तो -

$$s = \frac{\sigma l}{\pi r^2}$$

$$l = \frac{s \cdot \pi r^2}{\sigma}$$

उपर्युक्त (Observation)

① ध्यारामापी का उत्तिरोध (β) एवा द्वारा निश्चिप के लिए ध्यारा I वा मान क्षात्र करना :-

i) ध्यारामापी के स्कैल पर कुल अंकों की संख्या $N = 50$
बैटरी का विद्युतीय वार्षिक वृद्धि $E = 2$ volt

क्रम	उत्त्व	ध्यारामापी	अस्थानिक्षेप	मात्रा	$i_g = \left[\frac{E}{R + \beta} \right] \left[\frac{N}{n} \right]$	मात्रा
संख्या	उत्तिरोध	निश्चिप	के लिए	(G)	$i_g = \left[\frac{E}{R + \beta} \right] \left[\frac{N}{n} \right]$	i_g
	$R(2)$	$\beta = n$	उत्तिरोध	(2)	(Ampere)	
					2×50	
1.	5000	36	20.2		$(5000 + 20) 36$	2238.89×10^6
					$= 553.42 \times 10^6$ A	$\frac{4}{4}$
2.	5500	32	20.2	20.2	566.12×10^6 A	559.12×10^6
3.	5900	30	20.2		563.06×10^6 A	
4.	6400	28	20.2		556.29×10^6 A	

Teacher's Signature: _____

$$③ l = \frac{5\pi \gamma^2}{\sigma}$$

$$= \frac{0.0074 \times 3.14 \times (0.024)^2}{1.78 \times 10^{-6}}$$

$$= \frac{74 \times 3.14 \times 576 \times 10^{-10}}{1.78 \times 10^{-6}}$$

$$= \frac{133839.36 \times 10^{-4}}{1.78}$$

$$= 75190.65 \times 10^{-4} \text{ cm}$$

$$l = \frac{7.5 \text{ cm}}{}$$

$$s = 0.0074 \Omega$$

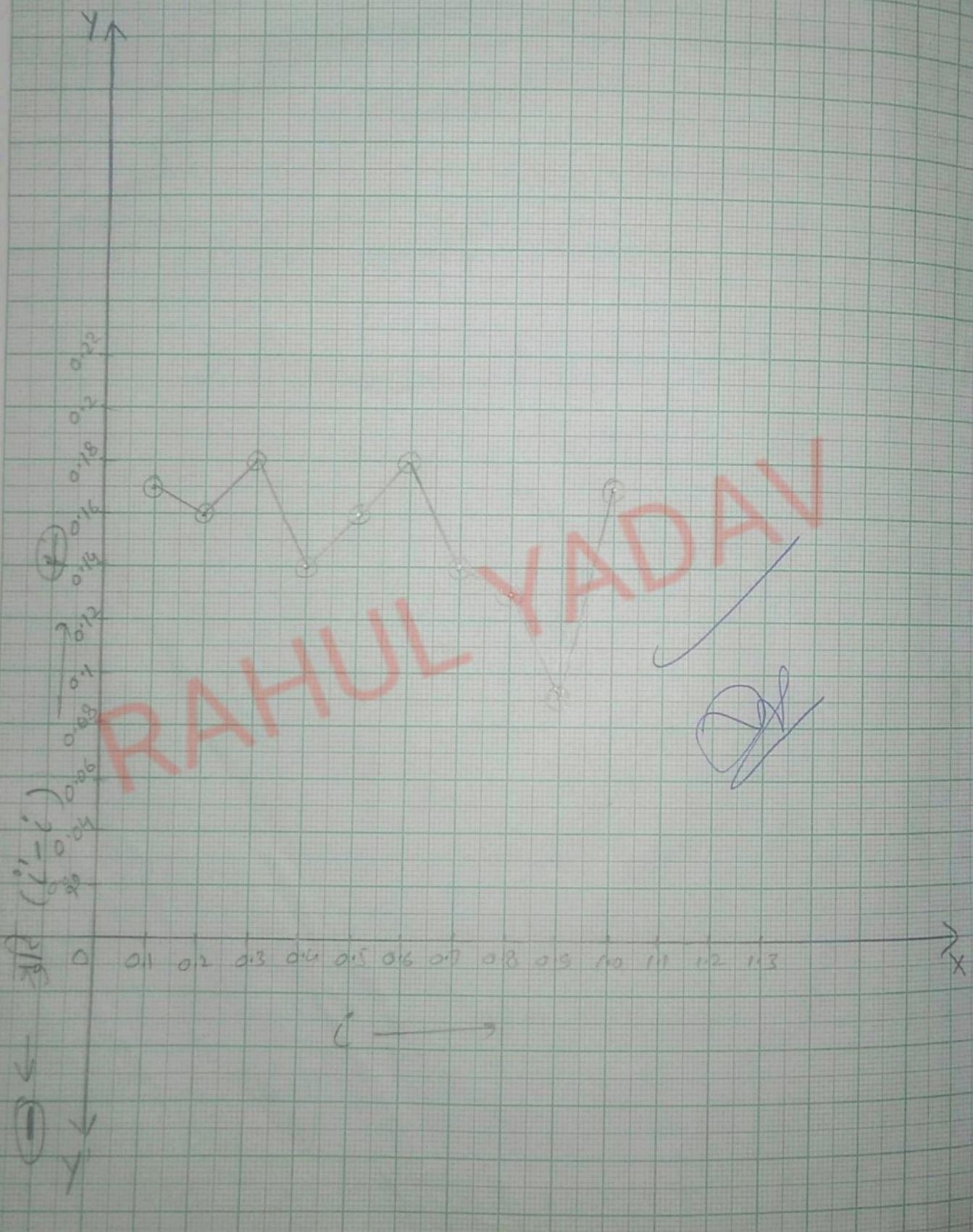
$$\gamma = 0.024 \text{ cm}$$

$$\sigma = 1.78 \times 10^{-6} \Omega \text{ cm}^2$$

RAHUL YADAV

(i) शॉट उत्तिरोध (d) तथा शॉट तार की वांछित लम्बाई (l) लात करना →

(ii) तार का गोण S.W.G No. =


(iii) त्रिज्या (r) =

(iv) तार के पक्षार्थ का नियोग उत्तिरोध (σ) = $1.78 \times 10^{-6} \text{ N} \times \text{cm}$

तार की त्रिज्या का मापन →

क्र. सं	दौसि (एव्वांग औसाना) (a)	उत्ताका \times पैमाना x (b) अल्पतमाक	कुल पात्राक	माप	माप
1.	0.0 cm	48×0.001 = 0.048	0.048 cm	0.048	$\frac{0.048}{2}$
2.	0.0 cm	49×0.001 = 0.049	0.049 cm	0.048 cm	$= 0.024 \text{ cm}$
3.	0.0 cm	48×0.001 = 0.048	0.048 cm		

Teacher's Signature: _____

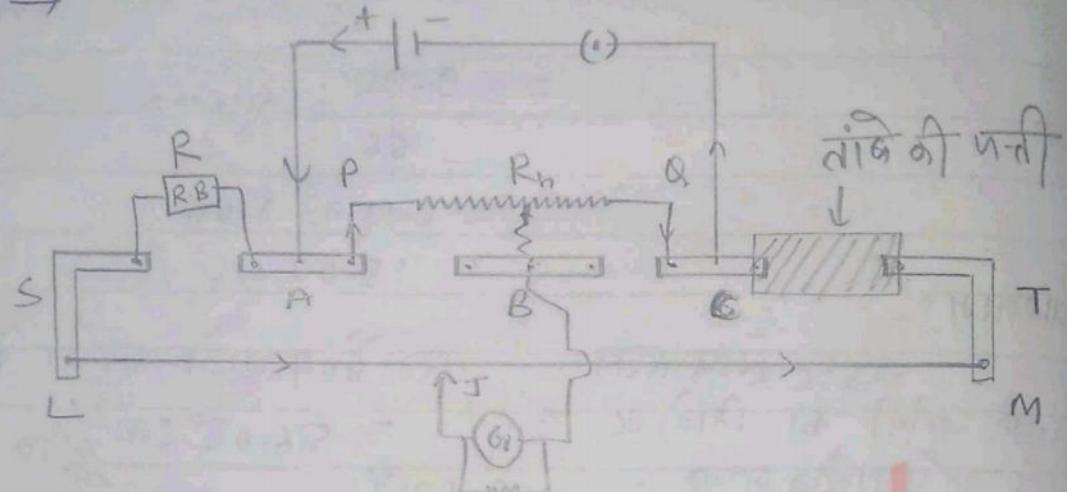
कपालरित अमीटर का अशाफ़न :-

क्र.	अमीटर का पारेंपाक	व्यावामापी स्केल पर विद्युति	कपालरित अमीटर द्वारा वापी बाई वाईट $I' = \left(\frac{n}{N}\right) I$	पारेंपाक में त्रुटि $= (I' - I) \text{ Amp.}$
1.	1.0 A	3.9	1.17 A	0.17 Amp
2.	0.9 A	3.3	0.99 A	0.09 Amp
3.	0.8 A	3.1	0.93 A	0.13 Amp
4.	0.7 A	2.8	0.84 A	0.14 Amp.
5.	0.6 A	2.6	0.78 A	0.18 Amp
6.	0.5 A	2.2	0.66 A	0.16 Amp.
7.	0.4 A	1.8	0.54 A	0.14 Amp
8.	0.3 A	1.6	0.48 A	0.18 Amp
9.	0.2 A	1.2	0.36 A	0.16 Amp
10.	0.1 A	0.9	0.27 A	0.17 Amp.

परिणाम :- फिर गर व्यावामापी जिसके प्रतिरोध $R = 20 \Omega$

को $I = 1.5 \text{ Amp.}$ परास के अमीटर में $S = 0.0074 \Omega$ के रूप प्रतिरोध जिसकी वांछित लम्बाई $l = 7.5 \text{ cm}$ है उगाकर कपालरित किया गया।

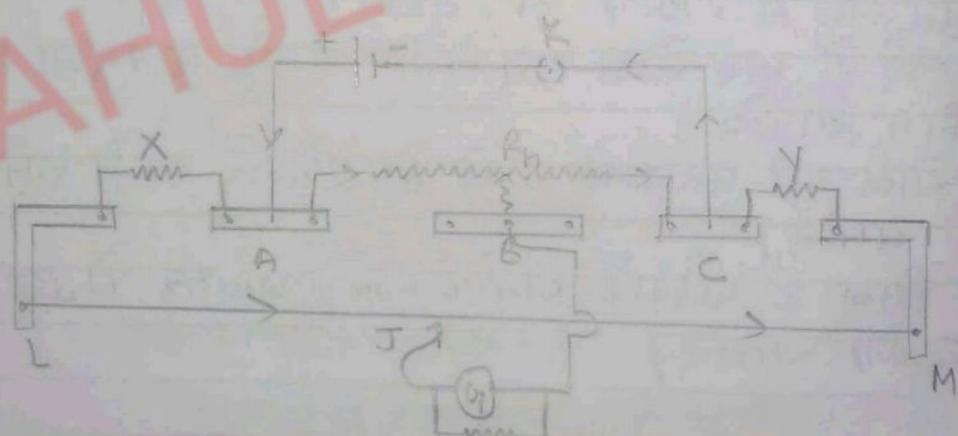
Teacher's Signature: _____


सावधानिपॉ:-

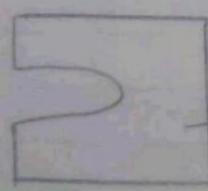
- (i) अशांकन के लिए उपयोग में लोपेग्ये अमीर का वही वरासु होने वाले जिसके लिए कि घ्यारामापी से कपालित किया गया है।
- (ii) अमीर का ग्राम्भिक पाइपांक छुन्य होना चाहिए।
- (iii) कांट उतिरोध त लगाते समय व्यान रहे कि लेबाई त चार्ट गर घ्यारामापी के बाहरी र्मिनलो में जोड़ जौने।

DR
20/01/2018

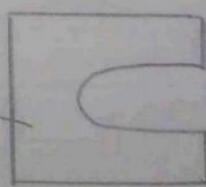
RAHUL YADAV


वित्र →

(i) विशिष्ट उत्तिरोध (प्र) छात भरना →


वित्र →

RAHUL YADAV



वे अल्प उत्तिरोधों के मध्य अन्तर क्षात्र भरना।

उत्तिरोध नहीं

तांडे की पट्टी

अल्प उत्तिरोध का गान्धार नहीं

उद्देश्य :-

केरिंगोस्टर सेन्टर की सहायता से गर के पदार्थ का विश्लेषण
प्रतिरोध ज्ञात करना तथा दो अल्प प्रतिरोधों का अन्तर ज्ञात करना

उपकरण :- केरिंगोस्टर सेन्टर, लेबलों की सेल, गैल्वोमीटर, २५ अमे
प्रतिरोध का व्याप्ति परिमांग (पा रु और प्रतिरोध वी को कुप्रिया)
प्रतिरोध बॉक्स, गोले की पट्टिया, शॉट गर, दो प्रतिरोध गद आदि।

सिद्धान्त :-

केरिंगोस्टर सेन्टर के लिए जब $x = 29$ $y = 0$ तथा प्रथम अवस्था में
सन्तुलित लम्बाई l_1 , व $x = 0$ y को प्रतिस्थापित करने पर सन्तुलित लम्बाई
 l_2 हो गे -

$$(i) f = \frac{R}{(l_2 - l_1)} \text{ m}$$

$$(ii) x - y = f(l_2' - l_1') \text{ m}$$

अब अन्तर प्रतिरोध x का मान -

$$(iii) x = f(l_2' - l_1') = \frac{R(l_2' - l_1')}{(l_2 - l_1)} \text{ m}$$

अब अन्तर प्रतिरोध गर का विश्लेषण प्रतिरोध -

$$(iv) K = \frac{K\pi r^2}{l} \text{ m}$$

जब गर की विष्या K न हो तब लम्बाई l है।

गोले

Teacher's Signature _____

৩১০৭১ →

① $f = \frac{R}{l_2 - l_1}$

i) $R = 0.1 \Omega$, $l_1 = 50.7 \text{ cm}$, $l_2 = 53.08 \text{ cm}$
 $l_2 - l_1 = 3.1 \text{ cm}$

$$f = \frac{0.1}{3.1} = 0.032 \Omega/\text{cm}$$

ii) $R = 0.2 \Omega$, $l_1 = 49.3 \text{ cm}$, $l_2 = 55 \text{ cm}$
 $l_2 - l_1 = 5.7 \text{ cm}$

$$f = \frac{0.2}{5.7} = 0.035 \Omega/\text{cm}$$

iii) $R = 0.3 \Omega$, $l_1 = 46.3 \text{ cm}$, $l_2 = 57.2 \text{ cm}$
 $l_2 - l_1 = 10.9 \text{ cm}$

$$f = \frac{0.3}{10.9} = 0.036 \Omega/\text{cm}$$

মোট মাত্র = $\frac{0.032 + 0.035 + 0.036}{3}$

$$f = 0.03317 \Omega/\text{cm}$$

② $X = (f(l_2' - l_1') + y) \Omega$

i) $l_1' = 50.2 \text{ cm}$, $l_2' = 54 \text{ cm}$, $y = 0.2 \Omega$

$$f = 0.03317 \Omega/\text{cm}$$
, $l_2 - l_1 = 3.8 \text{ cm}$

$$X = 0.03317(3.8) + 0.2 = 0.32 \Omega$$

ii) $l_1' = 49.3 \text{ cm}$, $l_2' = 57 \text{ cm}$, $y = 0.3 \Omega$
 $l_2' - l_1' = 7.7$

$$X = 0.03317(7.7) + 0.3 = 0.55 \Omega$$

प्रैश्यो :-

1) अव्याप्त करना →

क्र. सं.	बापे छीर के सन्तुलन किन्तु में दुरी जबकि अव्याप्त R cm	$f = \frac{R}{(l_2 - l_1)}$
11	बापे विक्त स्थान में l_1 cm	बापे विक्त स्थान में l_2 cm $(l_2 - l_1)$ cm
1.	0.1 R	50.7 cm
2.	0.2 R	49.3 cm
3.	0.4 R	46.3 cm

अव्याप्त अव्याप्त X का मान ज्ञात करना →

क्र. सं.	बापे छीर के सन्तुलन किन्तु में अव्याप्त X	$f = f(l_2 - l_1)$
1.	बापे विक्त स्थान में l_1 (cm)	बापे विक्त स्थान में l_2 (cm)
1.	0.2 R	50.2 cm
2.	0.3 R	49.3 cm
3.	0.4 R	48.5 cm

$$f \text{ का माध्य मान} = \frac{0.032 + 0.035 + 0.036}{3}$$

$$= 0.03317 \text{ R/cm}$$

$$X \text{ का माध्य मान} = \frac{0.32 + 0.55 + 0.71}{3}$$

$$= 0.526 \text{ R}$$

Teacher's Signature _____

अभियान

$$(\text{iii}) \quad l_1' = 46.5 \text{ cm}, \quad l_2' = 58 \text{ cm}, \quad \gamma = 0.4 \Omega, \\ l_2 - l_1 = 9.5 \text{ cm}$$

$$X = 0.03317 (9.5) + 0.4 \\ = 0.715 \Omega$$

X का माध्यमान -

$$\frac{0.32 + 0.55 + 0.71}{3} = 0.526 \Omega$$

(3)

$$\text{स्तुति} \quad x - y = f(l_2' - l_1')$$

$$(\text{i}) \quad l_1' = 54.2 \text{ cm}, \quad l_2' = 54.9 \text{ cm} \\ l_2 - l_1' = 0.7 \text{ cm} \quad \rho = 0.03317 \Omega/\text{cm}$$

$$X - y = 0.7 \times 0.03317 = 0.023 \Omega$$

$$(\text{ii}) \quad l_1' = 61.4 \text{ cm}, \quad l_2' = 62 \text{ cm}$$

$$l_2' - l_1' = 0.6 \text{ cm}$$

$$X - y = 0.03317 \times 0.6 = 0.019 \Omega$$

$$(\text{iii}) \quad l_1' = 64 \text{ cm}, \quad l_2' = 64.6 \text{ cm},$$

$$l_2' - l_1' = 0.6 \text{ cm}$$

$$X - y = 0.03317 \times 0.6 = 0.019 \Omega$$

$$X - y \text{ का माध्यमान} = \frac{0.023 + 0.019 + 0.019}{3}$$

$$X - y = 0.0203 \Omega$$

(R) उच्च उत्तिरोध \times तथा y के माध्य अन्तरशात छेत्र) \rightarrow

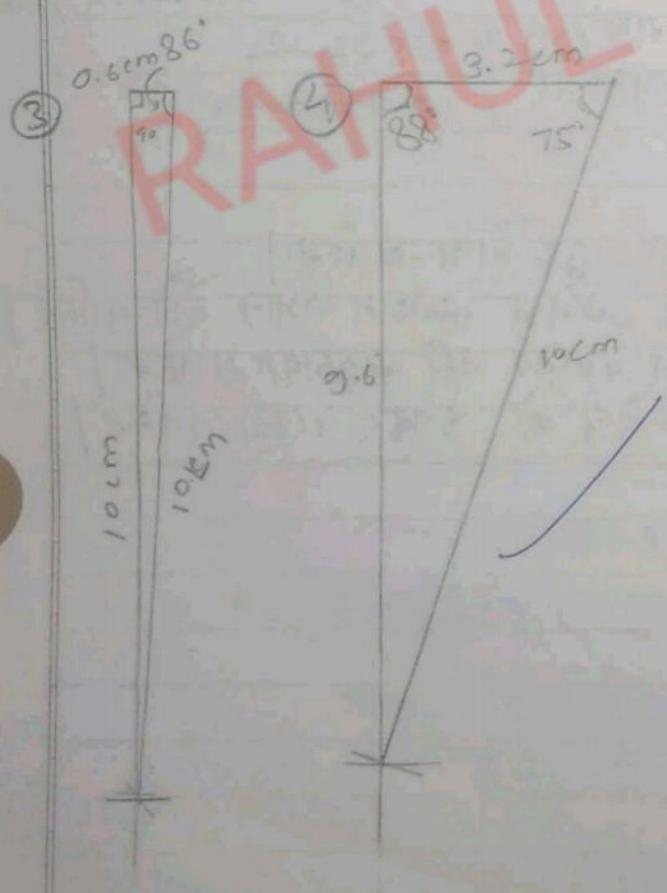
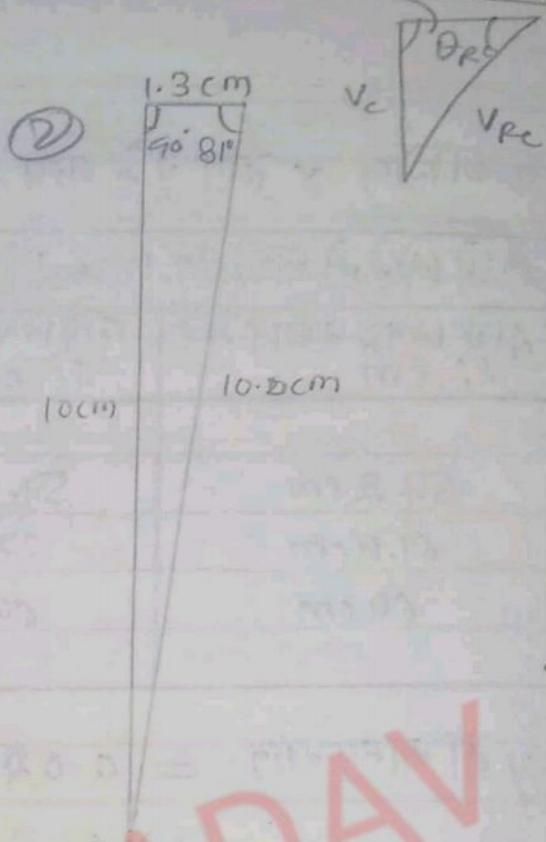
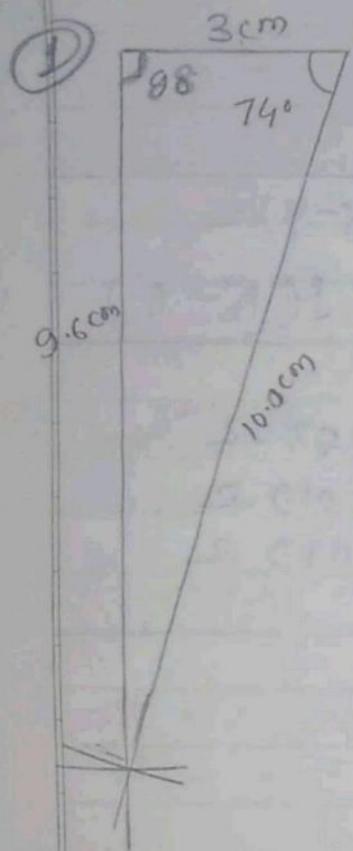
क्रम	बोपै निरैक्षे संतुलन लिने अलाई X	$(X-Y) =$	
सं.	बोपै निरैक्षत स्थान में l_1 cm	बोपै निरैक्षत स्थान में l_2 cm	$f(l_2 - l_1)$
1.	54.2 cm	54.9 cm	0.023 Ω
2.	61.4 cm	62 cm	0.016 Ω
3.	64 cm	64.6 cm	0.016 Ω

$$X-Y \text{ का माध्य मान} = 0.0203 \Omega$$

परिणाम \rightarrow

- टिपै गोले हारे के पदार्थ का विक्षिप्त उत्तिरोध (f) = $0.03317 \Omega/cm$
- अक्षात उत्तिरोध का माध्य मान (X) = 0.526Ω
- अल्प उत्तिरोध X व y के मध्य अन्तर = 0.0203Ω

क्षावधानियाः -




- सारे तारों का सम्बन्ध हुड़ होना चाहिए।
- सेट्टु के तारों भुजाओं का उत्तिरोध लगभग समान होना चाहिए।
- आवृत्ति की तापापर ज्यादा दबाकर वही सरकारा चाहिए।
- उत्तिरोध B पर में उत्तिरोध को उसकर रखना चाहिए।

20/01/2017
20/01/2017

Teacher's Signature _____

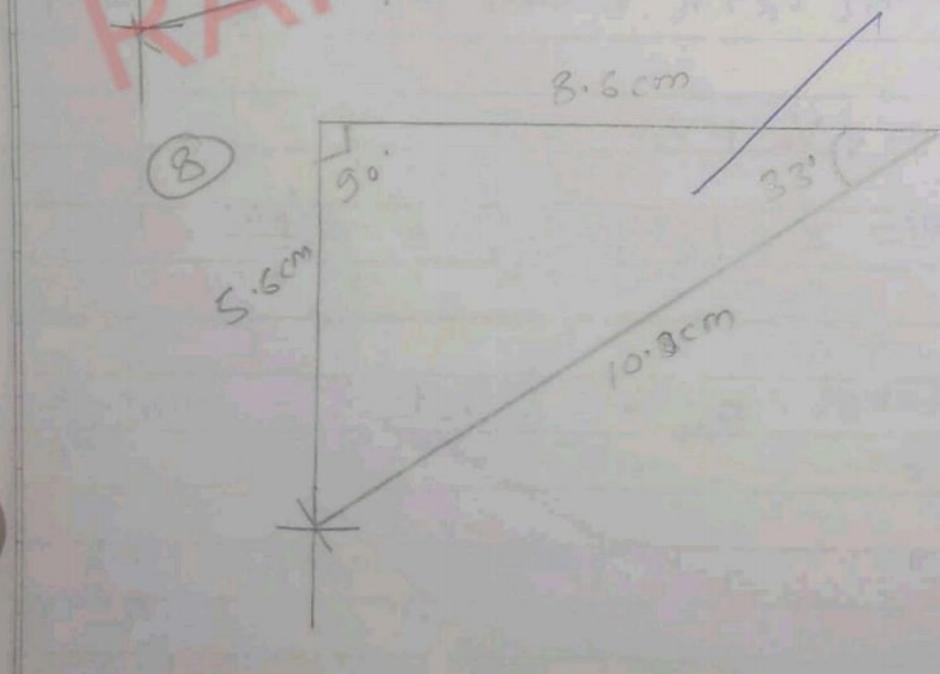
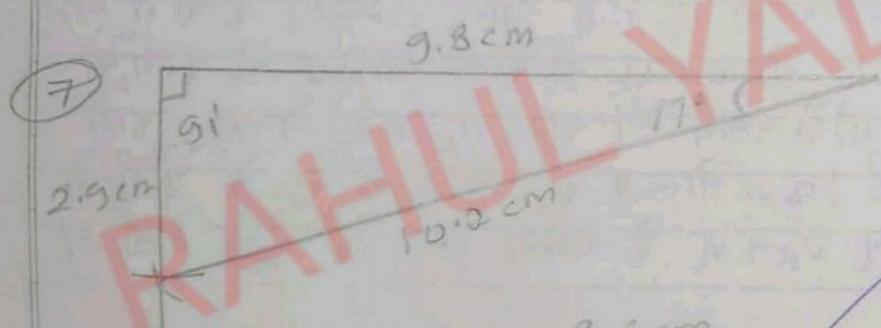
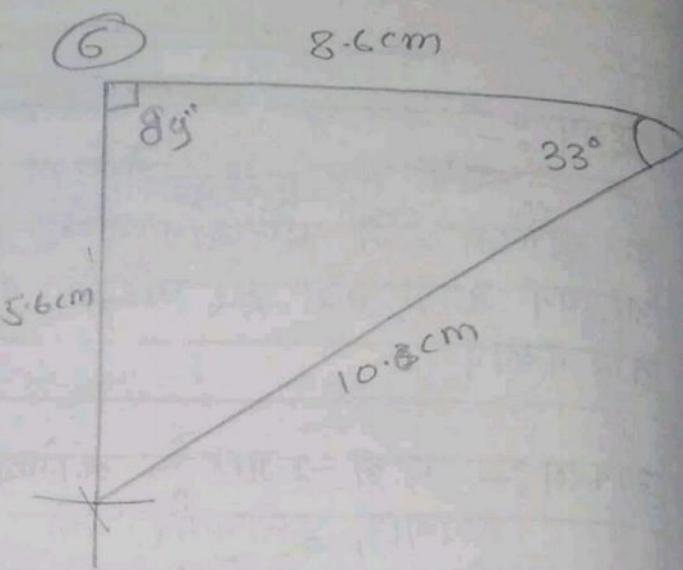
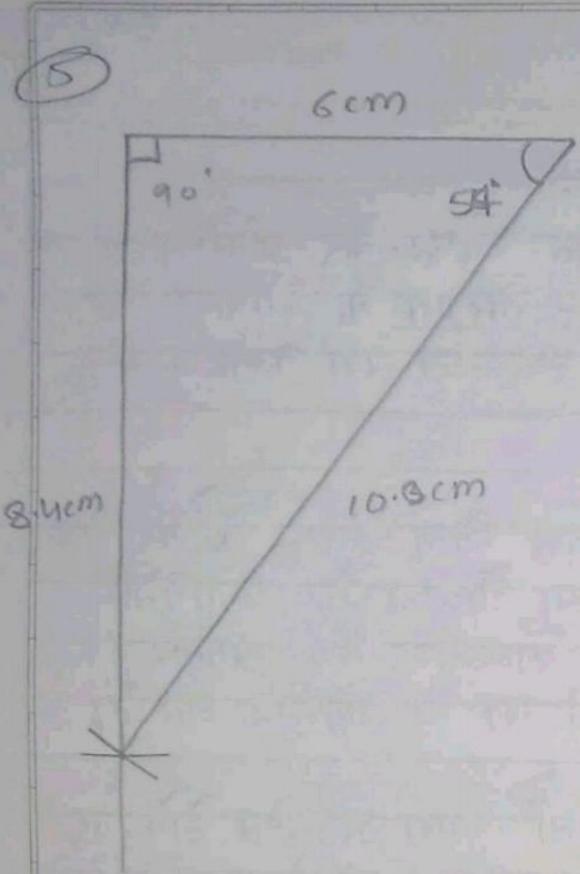
मुम्पा

5 Volt = 1 cm $\Rightarrow V_R$

योग - 16

उद्देश्य :-

रेत्र A-C Mains वोल्टता स्रोत प्रयुक्ति के प्रतिशेष R तथा व्यावरिता C में परिवर्तन करके R-C परिपथ के व्यवहार का अध्ययन करना तथा R-C परिपथ की व्यविधि तथा कला सम्बन्ध शाहत करना।





उपकरण :- अन्तर्गत - 2 मान के प्रतिशेष तथा अन्तर्गत व्यावरिता के सम्बन्धित, अपव्यापी इंसेफार्मर जो अल्प वोल्टता के प्रत्यावर्ती व्यावरा अनित्र का छाप करे। प्रत्यावर्ती वोल्टमीटर तथा अमीटर पे सभी उपकरण रेत्र बोर्ड पर स्थापी रूप से संयोजित होते हैं।

सिद्धान्त :- R-C परिपथ में प्रत्यावर्ती व्यावरा उत्पादित होने पर प्रतिशेष पर वोल्टता V_R तथा व्यावरा I रेत्र के कला में होते हैं परन्तु संव्यावरित C पर वोल्टता V_C की कला व्यावरा I की कला के लापेश ग/2 कोण से पीछे रहती है। अतः V_R व V_C में ग/2 कला कोण जो अन्तर होता है। कुल वोल्टता V_{RC} व V_R व V_C के पौर्ण के तुल्य गति होती है वरन् V_R व V_C के समिश्र पौर्ण के तुल्य होती है। जिससे -

$$V_{RC} = \sqrt{V_R^2 + V_C^2}$$

$$R \text{ परिपथ की व्यविधि} = Z = \sqrt{R^2 + \frac{1}{\omega^2 C^2}} = \frac{V_{RC}}{I}$$

तथा परिवार्ता कला अन्तर $\theta_{RC} = -\tan^{-1} \frac{1}{\omega C R} = -\tan^{-1} \frac{V_C}{V_R}$

प्रैक्टिकः —

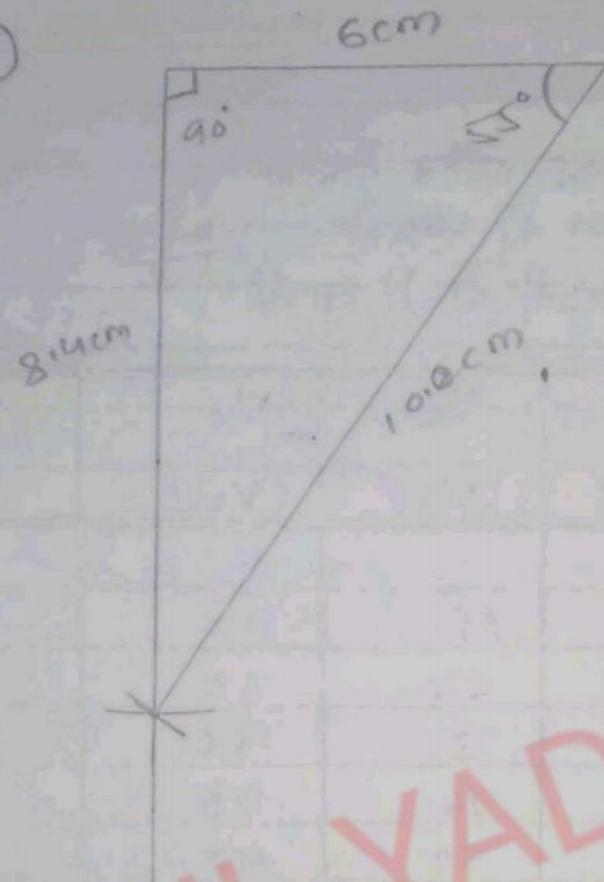
परिपथ में उपकृत अन्तर वोल्ट $V_s = \text{volt}$

उत्पादित धारा की आवृत्ति $f = 50 \text{ Hz}$

उत्पादित धारा की कोणीय आवृत्ति $\omega = 2\pi f = 314 \text{ rad/sec.}$

संख्या	R ($\text{k}\Omega$)	C (μF)	V_R (volt)	V_C (volt)	V_{RC} volt
1.	1	1	15	48	50
2.	1	0.47	6.5	50	50
3.	1	0.22	3	50	50
4.	5	0.22	16	48	50
5.	5	0.47	30	42	50
6.	5	1	43	28	50
7.	10	1	49	14.5	50
8.	10	0.47	43	28	50
9.	10	0.22	30	72	50

वर्णना →


(A) उपरोक्त RC संरचना के लिए उपकृत पैमाना मानक V_R, V_C, V_{RC} का सदिश आरब विचरण है।

$V_R^2 + V_C^2$ का मान आकलित हरके पाग निशाजे है। जो V_{RC} वरासर होता है।

Teacher's Signature _____

रामेश्वर

Q)

RAHUL YADAV

Expt. No. _____

क्र. सं.	R (k ²)	C (MF)	$V_{PC} = \sqrt{V_R^2 + V_C^2}$	सदिश आरेय	
				से पाप	θ
1.	1	1	50.28	74	88°
2.	1	0.47	50.42	81	90°
3.	1	0.22	50.08	86	96°
4.	5	0.22	50.59	75	88°
5.	5	0.47	51.61	54	96°
6.	5	1	51.31	80.33	89°
7.	10	1	51.10	17	91°
8.	10	0.47	51.31	33	89°
9.	10	0.22	51.61	55	96°

(B) बैंकातिक रूपों से उला (θ) → ~~VADAN~~

क्र. सं.	R (k ²)	C (MF)	$\theta_{PC} = \tan^{-1}\left(\frac{V_C}{V_R}\right)$
1.	1	1	72.64
2.	1	0.47	82.59
3.	1	0.22	86.49
4.	5	0.22	71.56
5.	5	0.47	54.13
6.	5	1	33.07
7.	10	1	16.48
8.	10	0.47	33.07
9.	10	0.22	54.46

~~RAHUL~~

Teacher's Signature _____

परिणाम:-

पुरिपथ में उत्तिरोध R पर वोल्टग V_R तथा संधारित C पर वोल्टग V_C में कलान्तर का मान, ऐक्विलिंग मान θ_{RC} के बराबर लगभग जाता है। V_{RC} में योगीकृत मान $\sqrt{V_R^2 + V_C^2}$ के मान के लगभग बराबर प्राप्त होता है। इससे V_R व V_C में θ_{RC} कलान्तर की तुष्टि होती है।

योगीकृत मान

(B) ऐक्विलिंग सुर्जों की →

५० H_z आवृत्ति पर $C = 1 \mu F$ के लिए

कलान्तर (θ_{RC})

1.	$R = 1 k\Omega$	74°
2.	$R = 5 k\Omega$	33°
3.	$R = 10 k\Omega$	17°

५० H_z आवृत्ति पर $C = 0.47 \mu F$ के लिए -

1.	$R = 1 k\Omega$	$\theta_{RC} = 81^\circ$
2.	$R = 5 k\Omega$	$\theta_{RC} = 54^\circ$
3.	$R = 10 k\Omega$	$\theta_{RC} = 33^\circ$

५० H_z आवृत्ति पर $C = 0.22 \mu F$ के लिए -

1.	$R = 1 k\Omega$	$\theta_{RC} = 86^\circ$
2.	$R = 5 k\Omega$	$\theta_{RC} = 73^\circ$
3.	$R = 10 k\Omega$	$\theta_{RC} = 55^\circ$

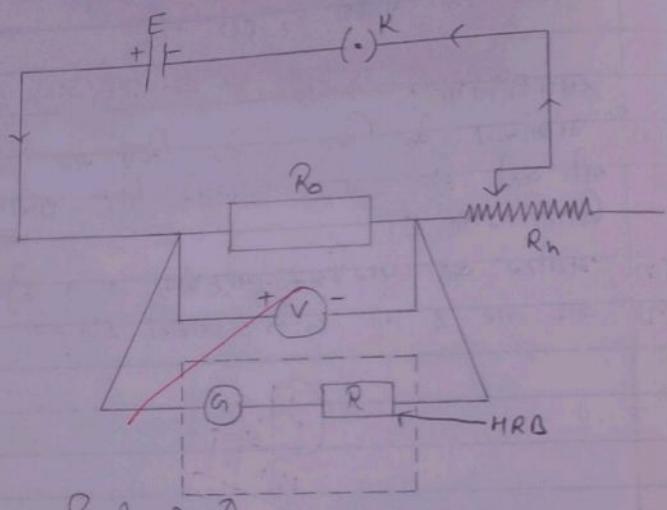
θ_{RC} के योगीकृत मान ऐक्विलिंग मानों के लगभग बराबर हैं।

सावधानिया →

i) अनियन्त्रित वोल्टग के अनुक्रम वोल्टमीटर के परास का दृष्टि करें।

28/10/2017
A.P.T.A

Teacher's Signature _____


2. उत्तरोथ्यु R_{tunpa} का उत्तिवाह $\frac{1}{w_c}$ का मान वर्कही कोरि में प्रपुक्त भरते हैं। अन्यथा v_R v_c में अन्तर बहुत अधिक होगा और मापन में वोल्टमीटर के परास का परिवर्तन करना पड़ेगा जिससे उपोग में त्रुटि सम्भव है।

3. R_1 $\frac{1}{w_c}$ अन्तर वोल्टग v_s के मानों के अनुसार उपपुक्त परास का अंकीटर उपुक्त करना चाहिए।

RAHUL YADAV

प्राप्ति

Teacher's Signature _____

कम पानी लेने वाली विद्युत

चित्र वोल्टमीटर के मंजुशीलन के लिए विस्तृप्त चित्र

महां

R_s = लघु स्विच्चरित ; R = कुण्डी

R = उच्च स्विच्चरित ; E = वोल्टता

G = गोल्वेनी मीटर ; R_h = धारा नियन्त्रित

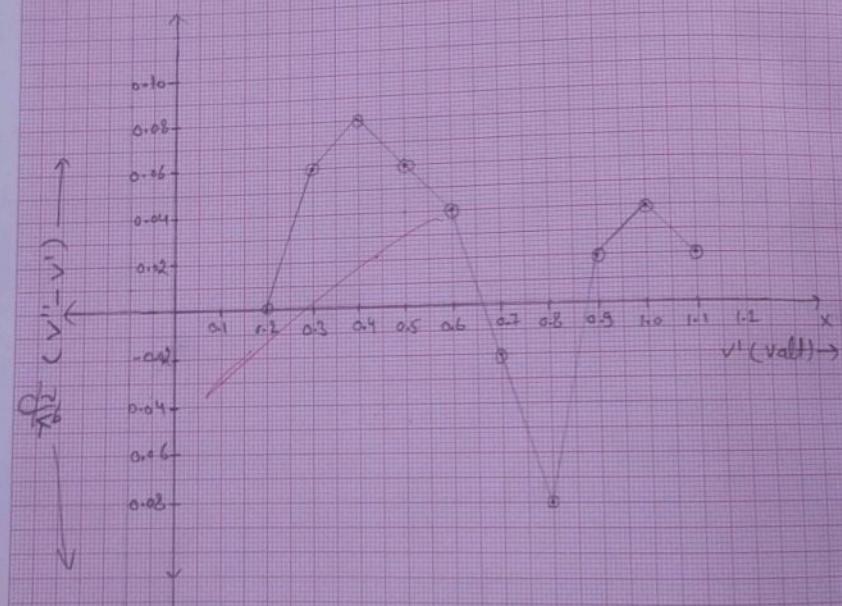
उपेक्षण :- (मैं गाये धारामापी के दी हुई परास के बीचमीट में कृपात्मकत करना।

उपेक्षण :- धारामापी व्यापार में बीचमीट, उच्च प्रतिरोध लांबस, निम्न प्रतिरोध लांबस (CLRBS) संचापक योग, की कुंजी संपीडक तार इत्यादि।

(सिद्धान्त) :- धारामापी के दी गयी परास व बीचमीट में बदलने हुए जीविकम में जीडनी के लिए मावश्यक उच्च प्रतिरोध

$$R = \frac{V}{Ig} - n$$

यहाँ R = धारामापी का प्रतिरोध
 Ig = हुई इकाई पर धारामापी का विद्युत दैर्घ्य धारा का मान


Teacher's Signature.....

14

$$\sqrt{0.0144} - 1 - \sqrt{0.01} = 0.1 \sqrt{0.144}$$

$$\sqrt{0.0144} - 1 - \sqrt{0.01} = 0.02 \sqrt{0.144}$$

प्रैक्टिक :- (a) धारामापी का परिवर्तीय (i) तथा (ii) जो मान ज्ञात करना -

(i) धारामापी के एकल पर कुल भौमि की संख्या $N = 25$

(ii) धैर्यी का उपुत्त वाइक बल $E = 0.2$ वैल

(b) वृक्षान्तरण के लिए स्पृहक तथा परिवर्तीय :-

$$R = \frac{V}{g} - G$$

$$= 3536 \text{ मीम}$$

सावधी :-

सं.	उच्च	धारामापी	माध्यमिक	माध्यम	$j_g = \frac{(E)}{(स्फ)} \times \frac{(N)}{(n)}$	माध्यम j_g
	परिवर्तीय में विशेष	एकल परिवर्तीय	G	(भौम)	एकल पर	एकल पर
	R	$G = n$	$R' = G$	(भौम)		
1	4000 ल	20 ल	22		0.565×10^{-3}	
2	5000 ल	20 ल	18	20 ल	0.553×10^{-3}	
3	6500 ल	20 ल	14		0.547×10^{-3}	0.56×10^{-3}
4	7000 ल	20 ल	12		0.593×10^{-3}	70442
5	9000 ल	20 ल	10		0.554×10^{-3}	

Teacher's Signature.....

प्राप्ति :- भव्य विशेष विवि से $n = 20$ मीम

$$(i) \quad i_g = \frac{E}{R+G} \times \left(\frac{N}{n}\right) = 580 \text{ म्पायर}$$

(ii) वृत्तान्तरण द्वारा म्पायर तथा प्रतिरोध

$$R = \frac{V}{i_g} - G = 3536 \text{ मीम}$$

मोडल प्राप्ति :-

माना प्रयोग में $R = 4500$ मीम, $n = 20$ खाना, $N = 30$ खाना, $E = 2$ वील तथा $R' = G = 25$ मीम प्राप्त होता है।

$$(i) \quad i_g = \frac{2 \times 30}{(4500 + 25) 20} = 660 \times 10^{-6} \text{ A} = 660 \mu\text{A}$$

(ii) $R = \frac{V}{i_g} - G$, $V = 3$ वील पराम का वृत्तान्तरण

$$\text{फैक्टर } \frac{V}{i_g} \text{ है तो } R = \frac{3}{660 \times 10^{-6}} - 25 = 4520 \Omega$$

PAGE NO. 17

DATE

परिणाम :-

५८ गए घारामापी की ० से ५८ वर्ष के परास वाले वैल्लभीटर में रुपन्तरित करने के लिए लैनीनगर में प्रमुख उत्तर प्रदीर्घ R का मान ३५३६ कीम है।

व्यावधानियाँ :-

- (1) वैल्लभीटर का प्रारम्भिक पाठ्यानुक्रम दीना चाहिए यदि नहीं उक्त रूप हो दी।
- (2) संचारिजन द्वारा व प्रधान दीना चाहिए।
- (3) अंशाशीधन में प्रधान वैल्लभीटर की परास यही है जैसे परास में घारामापी की लदला गया है।

OK
22/2/21

Teacher's Signature.....